- -

Previsão de secas na primavera em Portugal Continental com base em indicadores climáticos de larga escala

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Previsão de secas na primavera em Portugal Continental com base em indicadores climáticos de larga escala

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santos, J.F es_ES
dc.contributor.author Portela, M.M. es_ES
dc.contributor.author Pulido-Calvo, I. es_ES
dc.coverage.spatial east=-8.224454000000037; north=39.39987199999999; name= Portugal
dc.date.accessioned 2017-01-20T12:07:56Z
dc.date.available 2017-01-20T12:07:56Z
dc.date.issued 2015-10-30
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/77097
dc.description.abstract [EN] The success of a strategy of mitigation of the effects of the droughts requires the implementation of an effective monitoring and forecasting system, able to identify drought events and follow their spatiotemporal evolution. This article demonstrates the capability of the artificial neural networks in predicting the spring standardized precipitation index, SPI, for Portugal. The validation of the models used the hindcasting, which is a technique by which a given model is tested through its application to historical data followed by the comparison of the results thus achieved with the data. The SPI index was calculated at the timescale of six months and the climate indices used as external predictors in the hindcasting were the North Atlantic Oscillation and temperatures of the sea surface. The study showed the added value of the inclusion of previous predictors in the model. Maps of the probabilities of the drought occurrences which may be very important for integrated planning and management of water resources were also developed. es_ES
dc.description.abstract [PT] O sucesso de uma estratégia de mitigação dos efeitos da seca passa pela implementação de um sistema de monitorização e previsão eficaz, capaz de identificar os eventos de seca e de seguir a sua evolução espácio-temporal. Neste artigo demonstrase a eficiência de redes neuronais artificiais na previsão, para Portugal, do índice de precipitação padronizada, SPI, relativo à primavera. A validação dos modelos recorreu ao hindcasting, designando-se, por tal, a técnica através da qual um dado modelo é testado mediante a sua aplicação a períodos temporais históricos, com comparação dos resultados obtidos com as respectivas observações. O índice SPI foi calculado à escala temporal de 6 meses tendo o hindcast utilizado como indicadores climáticos a oscilação do Atlântico Norte e temperaturas da superfície do mar. O estudo evidenciou a mais valia da inclusão dos anteriores predictores externos no modelo de previsão. Elaboraram-se, ainda, mapas de probabilidade de ocorrência de seca os quais constituem importantes ferramentas no planeamento integrado e na gestão de recursos hídricos es_ES
dc.language Portugués es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Ingeniería del Agua
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject SST es_ES
dc.subject NAO es_ES
dc.subject SPI es_ES
dc.subject Hindcasting es_ES
dc.subject Artificial neural networks es_ES
dc.title Previsão de secas na primavera em Portugal Continental com base em indicadores climáticos de larga escala es_ES
dc.title.alternative Spring drought forecasting in mainland Portugal based on large-scale climatic indices es_ES
dc.type Artículo es_ES
dc.date.updated 2017-01-20T11:45:06Z
dc.identifier.doi 10.4995/ia.2015.4109
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Santos, J.; Portela, M.; Pulido-Calvo, I. (2015). Previsão de secas na primavera em Portugal Continental com base em indicadores climáticos de larga escala. Ingeniería del Agua. 19(4):211-227. https://doi.org/10.4995/ia.2015.4109 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2015.4109 es_ES
dc.description.upvformatpinicio 211 es_ES
dc.description.upvformatpfin 227 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19
dc.description.issue 4
dc.identifier.eissn 1886-4996
dc.description.references Agnew, C.T. (2000). Using the SPI to identify drought. Drought Network News, 12, 6-12. es_ES
dc.description.references ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000a). Artificial neural networks in hydrology. I. Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115) es_ES
dc.description.references ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000b). Artificial neural networks in hydrology. II. Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124-137. doi:10.1061/(ASCE)1084-0699(2000)5:2(124) es_ES
dc.description.references Bordi, I., Fraedrich, K., Petitta, M., Sutera, A. (2005). Methods for predicting drought occurrences. In Proceedings of the 6th International Conference of the European Water Resources Association, Menton, France. es_ES
dc.description.references Bowden, G.J., Dandy, G.C., Maier, H.R. (2005). Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology, 301(1-4), 75-92. doi:10.1016/j.jhydrol.2004.06.021 es_ES
dc.description.references Campolo, M., Andreusi, P., Soldati, A. (1999). River flood forecasting with a neural network model. Water Resources Research, 35(4), 1191-1197. doi:10.1029/1998WR900086 es_ES
dc.description.references Cancelliere, A., Di Mauro, G., Bonaccorso, B., Rossi, G. (2005). Stochastic forecasting of Standardized Precipitation Index. In Proceedings of XXXI IAHR Congress Water Engineering for the future: Choice and Challenges, Seoul, Korea, 3252-3260. es_ES
dc.description.references Cancelliere, A., Di Mauro, G., Bonaccorso, B., Rossi, G. (2007). Drought forecasting using the Standardized Precipitation Index. Water Resources Management, 21(5), 801-819. doi:10.1007/s11269-006-9062-y es_ES
dc.description.references Cordery, I., McCall, M. (2000). A model for forecasting drought from teleconnections. Water Resources Research, 36(3), 763-768. doi:10.1029/1999WR900318 es_ES
dc.description.references Dastorani, M.T., Afkhami, H. (2011). Application of artificial neural networks on drought prediction in Yazd (Central Iran). Desert, 16, 39-48. es_ES
dc.description.references Dawson, D.W., Wilby, R. (1998). An artificial neural network approach to precipitation-runoff modeling. Hydrological Sciences Journal, 43(1), 47-66. doi:10.1080/02626669809492102 es_ES
dc.description.references Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E., Timonin, V. (1998). Neural network residual kriging application for climatic data. Journal of Geographic Information and Decision Analysis, 2(2), 215-232. es_ES
dc.description.references Di Mauro, G., Bonaccorso, G.B., Cancelliere, A., Rossi, G. (2008). Use of NAO index to improve drought forecasting in the Mediterranean area: Application to Sicily region. Options Méditerranéennes. Série A: Séminaires Méditerranéens, No. 80. es_ES
dc.description.references Fernando, M.K.G., Maier, H.R., Dandy, G.C. (2009). Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. Journal of Hydrology, 367(3-4), 165-176. doi:10.1016/j.jhydrol.2008.10.019 es_ES
dc.description.references Gámiz-Fortis, S., Esteban-Parra, M.J., Trigo, R.M., Castro-Díez, Y. (2010). Potential predictability of Iberian river flow based on its relationship with previous winter global SST. Journal of Hydrology, 385, 143-149. doi:10.1016/j.jhydrol.2010.02.010 es_ES
dc.description.references Gámiz-Fortis, S., Pozo-Vázquez, D., Trigo, R.M., Castro-Díez, Y. (2008a). Quantifying the predictability of winter river flow in Iberia. Part I: Interannual predictability. Journal of Climate, 21, 2484-2502. doi:10.1175/2007JCLI1774.1 es_ES
dc.description.references Gámiz-Fortis, S., Pozo-Vázquez, D., Trigo, R.M., Castro-Díez, Y. (2008b). Quantifying the predictability of winter river flow in Iberia. Part II: Seasonal predictability. Journal of Climate, 21, 2503-2518. doi:10.1175/2007JCLI1775.1 es_ES
dc.description.references Hoerling, M., Kumar, A. (2003). The perfect ocean for drought. Science, 299(5607), 691-694. Geophysical Research Abstracts, 12, EGU2010-8454, EGU General Assembly 2010, Viena, Austria. doi:10.1126/science.1079053 es_ES
dc.description.references Hurrell, J.W. (1995). Decadal trends in North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676-679. doi:10.1126/science.269.5224.676 es_ES
dc.description.references Hurrell, J.W., Kushnir, Y., Visbeck, M. (2001). The North Atlantic Oscillation. Science, 291(5504), 603-605. doi:10.1126/science.1058761 es_ES
dc.description.references Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M. (2003). The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph Series, 134, American Geophysical Union, Washington, DC, USA. es_ES
dc.description.references Ionita, M., Lhomann, G., Rimbu, N. (2008). Prediction of spring Elbe discharge based on stable teleconnections with winter global temperature and precipitation. Journal of Climate, 21(23), 6215-6226. doi:10.1175/2008JCLI2248.1 es_ES
dc.description.references Ionita, M., Lohmann, G., Rimbu, N., Chelcea, S., Dima, M. (2012). Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Climate Dynamics, 38(1), 363-377. doi:10.1007/s00382-011-1028-y es_ES
dc.description.references Iyer, M.S., Rhinehart, R.R. (1999). A method to determine the required number of neural-network training repetitions. IEEE Transactions on Neural Networks, 10(2), 427-432. doi:10.1109/72.750573 es_ES
dc.description.references Jain, A., Kumar, A.M. (2007). Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7(2), 585-592. doi:10.1016/j.asoc.2006.03.002 es_ES
dc.description.references Jones, P.D., Jonsson, T., Wheeler, D. (1997). Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of Climatology, 17(13), 1433-1450. doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P es_ES
dc.description.references Jones, P.D., Osborn, T.J., Briffa, K.R. (2003). Pressure-based measures of the North Atlantic oscillation (NAO): a comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters in The North Atlantic Oscillation: climate significance and environmental impact. Geophysics Monogram 134, 51-62, American Geophysical Union. es_ES
dc.description.references Karunanithi, N., Grenney, W.J., Whitely, D., Bovee, K. (1994). Neural networks for river flow prediction. Journal of Computing Civil Engineering, 8(2), 201-219. doi:10.1061/(ASCE)0887-3801(1994)8:2(201) es_ES
dc.description.references Kim T. e Juan B. Valdés, (2003). Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks. Journal of Hydrologic Engineering, 8(6), 319-328. doi:10.1061/(ASCE)1084-0699(2003)8:6(319) es_ES
dc.description.references Kitanidis, P.K., Bras, R.L. (1980). Real time forecasting with a conceptual hydrological model. 2. Applications and results. Water Resources Research, 16(6), 1034-1044. doi:10.1029/WR016i006p01034 es_ES
dc.description.references Kurnik, B. (2009). DESERT Action JRC, Drought forecasting methods. Ljubljana on 24 September 2009 - 1st DMCSEE - JRC Workshop on Drought Monitoring. es_ES
dc.description.references Legates, D.R., McCabe Jr., G.J. (1999). Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998WR900018 es_ES
dc.description.references Lloyd-Hughes, B. (2002). The long range predictability of European drought. PhD Thesis, Department of Space and Climate Physics, University of London, University College London, UK. es_ES
dc.description.references López-Moreno, J.I., Vicente-Serrano, S.M. (2008). Extreme phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: a multi-temporal-scale approach. Journal of Climate, 21(6), 1220-1243. doi:10.1175/2007JCLI1739.1 es_ES
dc.description.references López-Moreno, J.I., Beguería, S., Vicente-Serrano, S.M., García-Ruiz, J.M. (2007). The influence of the NAO on water resources in central Iberia: precipitation, streamflow anomalies and reservoir management strategies. Water Resources Research, 43,W09411, doi:10.1029/2007WR005864 es_ES
dc.description.references Martín, M.L., Luna, M.Y., Morata, A., Valero, F. (2004). North Atlantic teleconnection patterns of low-frequency variability and their links with springtime precipitation in the western Mediterranean. International Journal of Climatology, 24(2), 213-230. doi:10.1002/joc.993 es_ES
dc.description.references Martín-Vide, J., Fernández, D. (2001). El índice NAO y la precipitación mensual en la España peninsular. Investigaciones Geográficas, 26, 41-58. doi:10.14198/INGEO2001.26.07 es_ES
dc.description.references May, R.J., Maier, H.R., Dandy, G.C., Fernando, T.M.K.G. (2008). Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modelling and Software, 23(10-11), 1312-1326. doi:10.1016/j.envsoft.2008.03.007 es_ES
dc.description.references McKee, T.B., Doesken, N.J., Kleist, J. (1993).The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston, USA, 179-184. es_ES
dc.description.references Mishra, A.K., Desai, V.R. (2006). Drought forecasting using feed-forward recursive neural network. Ecological Modelling, 198(1-2), 127-138. doi:10.1016/j.ecolmodel.2006.04.017 es_ES
dc.description.references Mo, K.C., Jae-Kyung, E., Schemm, E., Yoo, S.-H. (2009). Influence of ENSO and the Atlantic multi-decadal Oscillation on drought over the United States. Journal of Climate, 22, 5962-5982. doi:10.1175/2009JCLI2966.1 es_ES
dc.description.references Mutlu, E., Chaubey, I., Hexmoor, H., Bajwa, S.G. (2008). Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes, 22(26), 5097-5106. doi:10.1002/hyp.7136 es_ES
dc.description.references Michie, D., Spiegelhalter, D.J., Taylor, C.C. (1994). Machine learning, neural and statistical classification. Project StatLog, Department of Statistics, University of Leeds, UK. es_ES
dc.description.references Ochoa-Rivera, J.C., García-Bartual, R., Andreu, J. (2002). Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks. Journal of Hydrology and Earth System Sciences, 6(4), 641-654. doi:10.5194/hess-6-641-2002 es_ES
dc.description.references Ochoa-Rivera, J.C., García-Bartual, R., Andreu, J. (2007). Influence of Inflows Modeling on Management Simulation of Water Resources System. Journal of Water Resources Planning and Management, ASCE, 133(2), 106-116. doi:10.1061/(ASCE)0733-9496(2007)133:2(106) es_ES
dc.description.references Portela, M.M., Quintela, A.C. (2006). Estimação em Portugal Continental de escoamento e de capacidades úteis de albufeiras de regularização na ausência de informação. Recursos Hídricos, 27(2), 7-18. es_ES
dc.description.references Pulido-Calvo, I., Portela, M.M. (2007). Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. Journal of Hydrology, 332(1-2), 1-15. doi:10.1016/j.jhydrol.2006.06.015 es_ES
dc.description.references Pulido-Calvo, I., Gutiérrez-Estrada, J.C., Savic, D. (2012). Heuristic modelling of the water resources management in the Guadalquivir River Basin, Southern Spain. Water Resources Management, 26(1), 185-209. doi:10.1007/s11269-011-9912-0 es_ES
dc.description.references Qian, B., Corte-Real, J.M., Xu, H. (2000a). Is the North Atlantic Oscillation the most important atmospheric pattern for precipitation in Europe? Journal of Geophysical Research, 105(D9), 901-910. doi:10.1029/2000JD900102 es_ES
dc.description.references Qian, B., Xu, H., Corte-Real, J.M. (2000b). Spatial-temporal structures of the quasi-periodic oscillations in precipitation over Europe. International Journal of Climatology, 20(13), 1583-1598. doi:10.1002/1097-0088(20001115)20:13<1583::AIDJOC560>3.0.CO;2-Y es_ES
dc.description.references Rodwell, M.J. (2003). On the predictability of the North Atlantic climate. The North Atlantic Oscillation: climate significance and environmental impact, Geophysical Monograph, 134, 173-192, Amer. Geophys. Union. doi:10.1029/134GM08 es_ES
dc.description.references Rossi, G. (2003). Requisites for a drought watch system. In: G. Rossi et al. (eds), Tools for Drought Mitigation in Mediterranean Regions, pp. 147-157. Kluwer Academic Publishing: Dordrecht. doi:10.1007/978-94-010-0129-8_9 es_ES
dc.description.references Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536. doi:10.1038/323533a0 es_ES
dc.description.references Santos, J.A., Corte-Real, J., Leite, S.M. (2005). Weather regimes and their connection to the winter precipitation in Portugal. International Journal of Climatology, 25(1), 33-50. doi:10.1002/joc.1101 es_ES
dc.description.references Santos, J.F., Portela, M.M., Pulido-Calvo, I. (2011). Regional frequency analysis of droughts in Portugal. Water Resources Management, 25(14), 3537-3558. doi:10.1007/s11269-011-9869-z es_ES
dc.description.references Santos, J.F., Portela, M.M., Pulido-Calvo, I. (2013). Dimensionality reduction in drought modelling. Hydrological Processes, 27(10), 1399-1410. doi:10.1002/hyp.9300 es_ES
dc.description.references Santos, J.F., Portela, M.M., Pulido-Calvo, I., (2014). Spring drought prediction based on winter NAO and global SST in Portugal, Hydrological Processes, 28(3), 1009-1024. doi:10.1002/hyp.9641 es_ES
dc.description.references Santos, J.F., Pulido-Calvo, I., Portela, M.M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3). DOI: 10.1029/2009WR008071. doi:10.1029/2009WR008071 es_ES
dc.description.references Senthil-Kumar, A.R., Sudheer, K.P., Jain, S.K., Agarwal, P.K. (2005). Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes, 19(6), 1277-1291. doi:10.1002/hyp.5581 es_ES
dc.description.references Silva, A.T., Portela, M.M., Naghettini, M. (2012), Nonstationarities in the occurrence rates of flood events in Portuguese watersheds. Journal of Hydrology and Earth System Sciences, 16, 241-254. doi:10.5194/hess-16-241-2012 es_ES
dc.description.references Smith, T.M., Reynolds, R.W., Peterson, T.C. Lawrimore, J. (2008). Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). Journal of Climate, 21, 2283-2296. doi:10.1175/2007JCLI2100.1 es_ES
dc.description.references Snedecor, G.W., Cochran, W.G. (1989). Statistical methods, Ames, Iowa State University Press (8th edition), Iowa, USA. es_ES
dc.description.references Trigo, R.M., Osborn, T.J., Corte-Real, J.M. (2002). The North Atlantic Oscillation influence on Europe. Climate impacts and associated physical mechanisms. Climate Research, 20, 9-17. doi:10.3354/cr020009 es_ES
dc.description.references Trigo, R.M., Pozo-Vázquez, D., Osborn, T.J., Castro-Díez, Y., Gámiz-Fortis, S., Esteban-Parra, M.J. (2004). North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24(8), 925-944. doi:10.1002/joc.1048 es_ES
dc.description.references Trigo, R., Xoplaki, E., Zorita, E., Luterbacher, J., Krichak, S.O., Alpert, P., Jacobeit, J., Sáenz, J., Fernández, J., González-Rouco, F., García-Herrera, R., Rodo, X., Brunetti, M., Nanni, T., Maugeri, M., Trkes, M., Gimeno, L., Ribera, P., Brunet, M., Trigo, I.F., Crepon, M., Mariotti, A. (2006). Relations between Variability in the Mediterranean region and mid-latitude variability. In: Mediterranean Climate Variability, edited by: Lionello P., Malanotte-Rizzoli P., e R. Boscolo. Amsterdam, Elsevier, 179-226. doi:10.1016/s1571-9197(06)80006-6 es_ES
dc.description.references Vicente-Serrano, S.M., López-Moreno, J.I., Lorenzo-Lacruz, J., El Kenawy, A., Azorin-Molina, C., Morán-Tejeda, E., Pasho, E., Zabalza, J., Beguería, S., Angulo-Martínez, M. (2011). The NAO impact on droughts in the Mediterranean region. In: VicenteSerrano S.M. e Trigo R. (Eds.), Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean region. Advances in Global Research (AGLO) series, Springer-Verlag. doi:10.1007/978-94-007-1372-7_3 es_ES
dc.description.references Vinther, B.M., Andersen, K.K., Hansen, A.W., Schmith, T., Jones, P.D. (2003). Improving the Gibraltar/Reykjavik NAO Index. Geophysical Research Letters, 30(23), 2222. doi:10.1029/2003GL018220 es_ES
dc.description.references Xoplaki E., González-Rouco J.F., Luterbacher J. e H. Wanner, (2004). Wet season Mediterranean precipitation variability: influence of large-scale dynamics and predictability. Climate Dynamiques 23, 63-78. es_ES
dc.description.references Xue, Y., Smith, T.M., Reynolds, R.W. (2003). Interdecadal changes of 30-yr SST normals during 1871-2000. Journal of Climate, 16, 1601-1612. doi:10.1175/1520-0442-16.10.1601 es_ES
dc.description.references Yevjevich, V. (1972). Stochastic Processes in Hydrology. Water Resources Publications, Fort Collins, Co. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem