Agnew, C.T. (2000). Using the SPI to identify drought. Drought Network News, 12, 6-12.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000a). Artificial neural networks in hydrology. I. Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000b). Artificial neural networks in hydrology. II. Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124-137. doi:10.1061/(ASCE)1084-0699(2000)5:2(124)
[+]
Agnew, C.T. (2000). Using the SPI to identify drought. Drought Network News, 12, 6-12.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000a). Artificial neural networks in hydrology. I. Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000b). Artificial neural networks in hydrology. II. Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124-137. doi:10.1061/(ASCE)1084-0699(2000)5:2(124)
Bordi, I., Fraedrich, K., Petitta, M., Sutera, A. (2005). Methods for predicting drought occurrences. In Proceedings of the 6th International Conference of the European Water Resources Association, Menton, France.
Bowden, G.J., Dandy, G.C., Maier, H.R. (2005). Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology, 301(1-4), 75-92. doi:10.1016/j.jhydrol.2004.06.021
Campolo, M., Andreusi, P., Soldati, A. (1999). River flood forecasting with a neural network model. Water Resources Research, 35(4), 1191-1197. doi:10.1029/1998WR900086
Cancelliere, A., Di Mauro, G., Bonaccorso, B., Rossi, G. (2005). Stochastic forecasting of Standardized Precipitation Index. In Proceedings of XXXI IAHR Congress Water Engineering for the future: Choice and Challenges, Seoul, Korea, 3252-3260.
Cancelliere, A., Di Mauro, G., Bonaccorso, B., Rossi, G. (2007). Drought forecasting using the Standardized Precipitation Index. Water Resources Management, 21(5), 801-819. doi:10.1007/s11269-006-9062-y
Cordery, I., McCall, M. (2000). A model for forecasting drought from teleconnections. Water Resources Research, 36(3), 763-768. doi:10.1029/1999WR900318
Dastorani, M.T., Afkhami, H. (2011). Application of artificial neural networks on drought prediction in Yazd (Central Iran). Desert, 16, 39-48.
Dawson, D.W., Wilby, R. (1998). An artificial neural network approach to precipitation-runoff modeling. Hydrological Sciences Journal, 43(1), 47-66. doi:10.1080/02626669809492102
Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E., Timonin, V. (1998). Neural network residual kriging application for climatic data. Journal of Geographic Information and Decision Analysis, 2(2), 215-232.
Di Mauro, G., Bonaccorso, G.B., Cancelliere, A., Rossi, G. (2008). Use of NAO index to improve drought forecasting in the Mediterranean area: Application to Sicily region. Options Méditerranéennes. Série A: Séminaires Méditerranéens, No. 80.
Fernando, M.K.G., Maier, H.R., Dandy, G.C. (2009). Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. Journal of Hydrology, 367(3-4), 165-176. doi:10.1016/j.jhydrol.2008.10.019
Gámiz-Fortis, S., Esteban-Parra, M.J., Trigo, R.M., Castro-Díez, Y. (2010). Potential predictability of Iberian river flow based on its relationship with previous winter global SST. Journal of Hydrology, 385, 143-149. doi:10.1016/j.jhydrol.2010.02.010
Gámiz-Fortis, S., Pozo-Vázquez, D., Trigo, R.M., Castro-Díez, Y. (2008a). Quantifying the predictability of winter river flow in Iberia. Part I: Interannual predictability. Journal of Climate, 21, 2484-2502. doi:10.1175/2007JCLI1774.1
Gámiz-Fortis, S., Pozo-Vázquez, D., Trigo, R.M., Castro-Díez, Y. (2008b). Quantifying the predictability of winter river flow in Iberia. Part II: Seasonal predictability. Journal of Climate, 21, 2503-2518. doi:10.1175/2007JCLI1775.1
Hoerling, M., Kumar, A. (2003). The perfect ocean for drought. Science, 299(5607), 691-694. Geophysical Research Abstracts, 12, EGU2010-8454, EGU General Assembly 2010, Viena, Austria. doi:10.1126/science.1079053
Hurrell, J.W. (1995). Decadal trends in North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676-679. doi:10.1126/science.269.5224.676
Hurrell, J.W., Kushnir, Y., Visbeck, M. (2001). The North Atlantic Oscillation. Science, 291(5504), 603-605. doi:10.1126/science.1058761
Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M. (2003). The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph Series, 134, American Geophysical Union, Washington, DC, USA.
Ionita, M., Lhomann, G., Rimbu, N. (2008). Prediction of spring Elbe discharge based on stable teleconnections with winter global temperature and precipitation. Journal of Climate, 21(23), 6215-6226. doi:10.1175/2008JCLI2248.1
Ionita, M., Lohmann, G., Rimbu, N., Chelcea, S., Dima, M. (2012). Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Climate Dynamics, 38(1), 363-377. doi:10.1007/s00382-011-1028-y
Iyer, M.S., Rhinehart, R.R. (1999). A method to determine the required number of neural-network training repetitions. IEEE Transactions on Neural Networks, 10(2), 427-432. doi:10.1109/72.750573
Jain, A., Kumar, A.M. (2007). Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7(2), 585-592. doi:10.1016/j.asoc.2006.03.002
Jones, P.D., Jonsson, T., Wheeler, D. (1997). Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of Climatology, 17(13), 1433-1450. doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P
Jones, P.D., Osborn, T.J., Briffa, K.R. (2003). Pressure-based measures of the North Atlantic oscillation (NAO): a comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters in The North Atlantic Oscillation: climate significance and environmental impact. Geophysics Monogram 134, 51-62, American Geophysical Union.
Karunanithi, N., Grenney, W.J., Whitely, D., Bovee, K. (1994). Neural networks for river flow prediction. Journal of Computing Civil Engineering, 8(2), 201-219. doi:10.1061/(ASCE)0887-3801(1994)8:2(201)
Kim T. e Juan B. Valdés, (2003). Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks. Journal of Hydrologic Engineering, 8(6), 319-328. doi:10.1061/(ASCE)1084-0699(2003)8:6(319)
Kitanidis, P.K., Bras, R.L. (1980). Real time forecasting with a conceptual hydrological model. 2. Applications and results. Water Resources Research, 16(6), 1034-1044. doi:10.1029/WR016i006p01034
Kurnik, B. (2009). DESERT Action JRC, Drought forecasting methods. Ljubljana on 24 September 2009 - 1st DMCSEE - JRC Workshop on Drought Monitoring.
Legates, D.R., McCabe Jr., G.J. (1999). Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998WR900018
Lloyd-Hughes, B. (2002). The long range predictability of European drought. PhD Thesis, Department of Space and Climate Physics, University of London, University College London, UK.
López-Moreno, J.I., Vicente-Serrano, S.M. (2008). Extreme phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: a multi-temporal-scale approach. Journal of Climate, 21(6), 1220-1243. doi:10.1175/2007JCLI1739.1
López-Moreno, J.I., Beguería, S., Vicente-Serrano, S.M., García-Ruiz, J.M. (2007). The influence of the NAO on water resources in central Iberia: precipitation, streamflow anomalies and reservoir management strategies. Water Resources Research, 43,W09411, doi:10.1029/2007WR005864
Martín, M.L., Luna, M.Y., Morata, A., Valero, F. (2004). North Atlantic teleconnection patterns of low-frequency variability and their links with springtime precipitation in the western Mediterranean. International Journal of Climatology, 24(2), 213-230. doi:10.1002/joc.993
Martín-Vide, J., Fernández, D. (2001). El índice NAO y la precipitación mensual en la España peninsular. Investigaciones Geográficas, 26, 41-58. doi:10.14198/INGEO2001.26.07
May, R.J., Maier, H.R., Dandy, G.C., Fernando, T.M.K.G. (2008). Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modelling and Software, 23(10-11), 1312-1326. doi:10.1016/j.envsoft.2008.03.007
McKee, T.B., Doesken, N.J., Kleist, J. (1993).The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston, USA, 179-184.
Mishra, A.K., Desai, V.R. (2006). Drought forecasting using feed-forward recursive neural network. Ecological Modelling, 198(1-2), 127-138. doi:10.1016/j.ecolmodel.2006.04.017
Mo, K.C., Jae-Kyung, E., Schemm, E., Yoo, S.-H. (2009). Influence of ENSO and the Atlantic multi-decadal Oscillation on drought over the United States. Journal of Climate, 22, 5962-5982. doi:10.1175/2009JCLI2966.1
Mutlu, E., Chaubey, I., Hexmoor, H., Bajwa, S.G. (2008). Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes, 22(26), 5097-5106. doi:10.1002/hyp.7136
Michie, D., Spiegelhalter, D.J., Taylor, C.C. (1994). Machine learning, neural and statistical classification. Project StatLog, Department of Statistics, University of Leeds, UK.
Ochoa-Rivera, J.C., García-Bartual, R., Andreu, J. (2002). Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks. Journal of Hydrology and Earth System Sciences, 6(4), 641-654. doi:10.5194/hess-6-641-2002
Ochoa-Rivera, J.C., García-Bartual, R., Andreu, J. (2007). Influence of Inflows Modeling on Management Simulation of Water Resources System. Journal of Water Resources Planning and Management, ASCE, 133(2), 106-116. doi:10.1061/(ASCE)0733-9496(2007)133:2(106)
Portela, M.M., Quintela, A.C. (2006). Estimação em Portugal Continental de escoamento e de capacidades úteis de albufeiras de regularização na ausência de informação. Recursos Hídricos, 27(2), 7-18.
Pulido-Calvo, I., Portela, M.M. (2007). Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. Journal of Hydrology, 332(1-2), 1-15. doi:10.1016/j.jhydrol.2006.06.015
Pulido-Calvo, I., Gutiérrez-Estrada, J.C., Savic, D. (2012). Heuristic modelling of the water resources management in the Guadalquivir River Basin, Southern Spain. Water Resources Management, 26(1), 185-209. doi:10.1007/s11269-011-9912-0
Qian, B., Corte-Real, J.M., Xu, H. (2000a). Is the North Atlantic Oscillation the most important atmospheric pattern for precipitation in Europe? Journal of Geophysical Research, 105(D9), 901-910. doi:10.1029/2000JD900102
Qian, B., Xu, H., Corte-Real, J.M. (2000b). Spatial-temporal structures of the quasi-periodic oscillations in precipitation over Europe. International Journal of Climatology, 20(13), 1583-1598. doi:10.1002/1097-0088(20001115)20:13<1583::AIDJOC560>3.0.CO;2-Y
Rodwell, M.J. (2003). On the predictability of the North Atlantic climate. The North Atlantic Oscillation: climate significance and environmental impact, Geophysical Monograph, 134, 173-192, Amer. Geophys. Union. doi:10.1029/134GM08
Rossi, G. (2003). Requisites for a drought watch system. In: G. Rossi et al. (eds), Tools for Drought Mitigation in Mediterranean Regions, pp. 147-157. Kluwer Academic Publishing: Dordrecht. doi:10.1007/978-94-010-0129-8_9
Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536. doi:10.1038/323533a0
Santos, J.A., Corte-Real, J., Leite, S.M. (2005). Weather regimes and their connection to the winter precipitation in Portugal. International Journal of Climatology, 25(1), 33-50. doi:10.1002/joc.1101
Santos, J.F., Portela, M.M., Pulido-Calvo, I. (2011). Regional frequency analysis of droughts in Portugal. Water Resources Management, 25(14), 3537-3558. doi:10.1007/s11269-011-9869-z
Santos, J.F., Portela, M.M., Pulido-Calvo, I. (2013). Dimensionality reduction in drought modelling. Hydrological Processes, 27(10), 1399-1410. doi:10.1002/hyp.9300
Santos, J.F., Portela, M.M., Pulido-Calvo, I., (2014). Spring drought prediction based on winter NAO and global SST in Portugal, Hydrological Processes, 28(3), 1009-1024. doi:10.1002/hyp.9641
Santos, J.F., Pulido-Calvo, I., Portela, M.M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3). DOI: 10.1029/2009WR008071. doi:10.1029/2009WR008071
Senthil-Kumar, A.R., Sudheer, K.P., Jain, S.K., Agarwal, P.K. (2005). Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes, 19(6), 1277-1291. doi:10.1002/hyp.5581
Silva, A.T., Portela, M.M., Naghettini, M. (2012), Nonstationarities in the occurrence rates of flood events in Portuguese watersheds. Journal of Hydrology and Earth System Sciences, 16, 241-254. doi:10.5194/hess-16-241-2012
Smith, T.M., Reynolds, R.W., Peterson, T.C. Lawrimore, J. (2008). Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). Journal of Climate, 21, 2283-2296. doi:10.1175/2007JCLI2100.1
Snedecor, G.W., Cochran, W.G. (1989). Statistical methods, Ames, Iowa State University Press (8th edition), Iowa, USA.
Trigo, R.M., Osborn, T.J., Corte-Real, J.M. (2002). The North Atlantic Oscillation influence on Europe. Climate impacts and associated physical mechanisms. Climate Research, 20, 9-17. doi:10.3354/cr020009
Trigo, R.M., Pozo-Vázquez, D., Osborn, T.J., Castro-Díez, Y., Gámiz-Fortis, S., Esteban-Parra, M.J. (2004). North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24(8), 925-944. doi:10.1002/joc.1048
Trigo, R., Xoplaki, E., Zorita, E., Luterbacher, J., Krichak, S.O., Alpert, P., Jacobeit, J., Sáenz, J., Fernández, J., González-Rouco, F., García-Herrera, R., Rodo, X., Brunetti, M., Nanni, T., Maugeri, M., Trkes, M., Gimeno, L., Ribera, P., Brunet, M., Trigo, I.F., Crepon, M., Mariotti, A. (2006). Relations between Variability in the Mediterranean region and mid-latitude variability. In: Mediterranean Climate Variability, edited by: Lionello P., Malanotte-Rizzoli P., e R. Boscolo. Amsterdam, Elsevier, 179-226. doi:10.1016/s1571-9197(06)80006-6
Vicente-Serrano, S.M., López-Moreno, J.I., Lorenzo-Lacruz, J., El Kenawy, A., Azorin-Molina, C., Morán-Tejeda, E., Pasho, E., Zabalza, J., Beguería, S., Angulo-Martínez, M. (2011). The NAO impact on droughts in the Mediterranean region. In: VicenteSerrano S.M. e Trigo R. (Eds.), Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean region. Advances in Global Research (AGLO) series, Springer-Verlag. doi:10.1007/978-94-007-1372-7_3
Vinther, B.M., Andersen, K.K., Hansen, A.W., Schmith, T., Jones, P.D. (2003). Improving the Gibraltar/Reykjavik NAO Index. Geophysical Research Letters, 30(23), 2222. doi:10.1029/2003GL018220
Xoplaki E., González-Rouco J.F., Luterbacher J. e H. Wanner, (2004). Wet season Mediterranean precipitation variability: influence of large-scale dynamics and predictability. Climate Dynamiques 23, 63-78.
Xue, Y., Smith, T.M., Reynolds, R.W. (2003). Interdecadal changes of 30-yr SST normals during 1871-2000. Journal of Climate, 16, 1601-1612. doi:10.1175/1520-0442-16.10.1601
Yevjevich, V. (1972). Stochastic Processes in Hydrology. Water Resources Publications, Fort Collins, Co.
[-]