- -

Edible and Biodegradable Starch Films: A Review

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Edible and Biodegradable Starch Films: A Review

Show full item record

Jiménez Marco, A.; Fabra Rovira, MJ.; Talens Oliag, P.; Chiralt Boix, MA. (2012). Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology. 5(6):2058-2076. https://doi.org/10.1007/s11947-012-0835-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/77247

Files in this item

Item Metadata

Title: Edible and Biodegradable Starch Films: A Review
Author: Jiménez Marco, Alberto Fabra Rovira, María José Talens Oliag, Pau Chiralt Boix, Mª Amparo
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] Mainly due to environmental aims, petroleum-based plastics are being replaced by natural polymers. In the last decades, starch has been evaluated in its film-forming ability for applications in the food packaging area. ...[+]
Subjects: Biopolymer , Casting , Crystallinity , Film formation , Barrier properties , Biodegradable starch , Casting method , Crystallinities , Film formations , Film properties , Film-forming , Food packaging , Functional compounds , Industrial processs , Inorganic fillers , Microstructural changes , Physicochemical property , Processing method , Starch films , Biopolymers , Mechanical properties , Starch
Copyrigths: Cerrado
Source:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-012-0835-4
Publisher:
Springer Verlag (Germany)
Publisher version: https://dx.doi.org/10.1007/s11947-012-0835-4
Project ID:
info:eu-repo/grantAgreement/MICINN//AGL2010-20694/ES/FILMS Y RECUBRIMIENTOS COMESTIBLES%2FBIODEGRADABLES, CON ACTIVIDAD ANTIMICROBIANA Y ANTIOXIDANTE, PARA USO ALIMENTARIO. UTILIZACION DE PROCESADO EN HUMEDO Y EN SECO./
Thanks:
The authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia throughout the project AGL2010-20694, con-financed with FEDER founds. A. Jimenez also thanks Conselleria de Educacio de la ...[+]
Type: Artículo

References

Abdorreza, M. N., Cheng, L. H., & Karim, A. A. (2011). Effect of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloids, 25, 56–60.

Alves, V. D., Costa, N., & Colehoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrates Polymers, 79, 269–276.

Anonymous. (1967). Edible packaging offers pluses for frozen meat, poultry. Quick Frozen Foods, 29, 165–167. 213–214. [+]
Abdorreza, M. N., Cheng, L. H., & Karim, A. A. (2011). Effect of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloids, 25, 56–60.

Alves, V. D., Costa, N., & Colehoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrates Polymers, 79, 269–276.

Anonymous. (1967). Edible packaging offers pluses for frozen meat, poultry. Quick Frozen Foods, 29, 165–167. 213–214.

Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81, 839–848.

Arvanitoyannis, I., & Biliaderis, C. G. (1998). Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chemistry, 62(3), 333–342.

Arvanitoyannis, I., & Biliaderis, C. G. (1999). Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers, 38(1), 47–58.

Arvanitoyannis, I. S., & Kassaveti, A. (2009). Starch–cellulose blends. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 19–53). New York: Wiley.

Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., & Yamamoto, N. (1997). Edible films made from gelatin, soluble starch and polyols. Part III. Food Chemistry, 60, 593–604.

Audic, J. L., & Chaufer, B. (2005). Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate. European Polymer Journal, 41, 1934–1942.

Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467–474.

Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56, 111–122.

Bangyekan, C., Aht-Ong, D., & Srikulkit, K. (2006). Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63(1), 61–71.

Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., dos Santos, R. M. C., da Silva, F. B. R., Prison, J. M., et al. (2008). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, 21(2), 85–89.

Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80, 972–978.

Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82, 17–25.

Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch-chitosan blend biodegradable film. LWT—Food Science and Technology, 41, 1633–1641.

Briston, J. H. (1986). Films, plastic. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 329–335). New York: Wiley.

Brown, W. H., & Poon, T. (2005). Introduction to organic chemistry (3rd ed.). New York: Wiley.

Burros, B. C., Young, L. A., & Carroad, P. A. (1987). Kinetics of corn meal gelatinization at high temperature and low moisture. Journal of Food Science, 52(5), 1372–1376.

Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875.

Carvalho, A. J. F. (2008). Starch: major sources, properties and applications as thermoplastic materials. In M. N. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources (pp. 321–342). Amsterdam: Elsevier.

Carvalho, A. J. F., Curvelo, A. A. S., & Agnelli, J. A. M. (2001). A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 45(2), 189–194.

Cheetham, N. W. H., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284.

Chen, J., Liu, C., Chen, Y., Chen, Y., & Chang, P. R. (2008). Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydrate Polymers, 74, 946–952.

Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88, 159–168.

Chiotelli, E., & Le Meste, M. (2003). Effect of triglycerides on gelatinisation and rheological properties of concentrated potato starch preparations. Food Hydrocolloids, 17, 629–639.

Chung, Y. L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E. P., & Lai, H. M. (2010). Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydrate Polymers, 79, 391–396.

Claudy, P., Jabranes, S., & Létoffé, J. M. (1997). Annealing of glycerol glass: enthalpy, fictive temperature and glass transition change with annealing parameters. Thermochimica Acta, 293, 1–11.

Curvelo, A. A. S., Carvalho, A. J. F., & Agnelli, J. A. M. (2001). Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydrate Polymers, 45(2), 183–188.

Delville, J., Joly, C., Dole, P., & Bliard, C. (2003). Influence of photo crosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53, 373–381.

Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51, 213–219.

Dole, P., Joly, C., Espuche, E., Alric, I., & Gontard, N. (2004). Gas transport properties of starch based films. Carbohydrate Polymers, 58, 335–343.

Donovan, J. W. (1979). Phase transitions of the starch–water system. Biopolymers, 18(2), 263–275.

Durrani, C. M., & Donald, A. M. (1995). Physical characterization of amylopectin gels. Polymer Gels and Networks, 3(1), 1–27.

Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173–1182.

Enrione, J., Osorio, F., Pedreschi, F., & Hill, S. (2010). Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food Bioprocess Technology, 3(6), 791–796.

Fabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393–400.

Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of fatty acids and beeswax addition on properties of sodium caseinate dispersions and films. Biomacromolecules, 10, 1500–1507.

Fakhouri, F. M., Fontes, L. C. B., Innocentini-Mei, L. H., & Collares-Queiroz, F. P. (2009). Effect of fatty acid addition on the properties of biopolymer films based on lipophilic maize starch and gelatin. Starch/Stärke, 61, 528–536.

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303.

Famá, L., Flores, S. K., Gerschenson, L., & Goyanes, S. (2006). Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers, 66, 8–15.

Famá, L., Goyanes, S., & Gerschenson, L. (2007). Influence of storage time at room temperature on the physicochemical properties of cassava starch films. Carbohydrate Polymers, 70, 265–273.

Fernández-Cervera, M., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., et al. (2004). Physical stability and moisture sorption of aqueous chitosan–amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58, 69–76.

Fishman, M. L., Coffin, D. R., Konstance, R. P., & Onwulata, C. I. (2000). Extrusion of pectin/starch blends plasticized with glycerol. Carbohydrate Polymers, 41(4), 317–325.

Flores, S., Conte, A., Campos, C., Gerschenson, L., & Del Nobile, M. (2007). Mass transport properties of tapioca-based active edible films. Journal of Food Engineering, 81(3), 580–586.

Forsell, P. M., Mikkilä, J. M., Moates, G. K., & Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch–glycerol–water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 34, 275–282.

Frost, K., Barthes, J., Kaminski, D., Lascaris, E., Niere, J., & Shanks, R. (2011). Thermoplastic starch-silica-polyvinyl alcohol composites by reactive extrusion. Carbohydrate Polymers, 84(1), 343–350.

García, M. A., Martino, M. N., & Zaritzky, N. E. (2000a). Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science, 65(6), 941–947.

García, M. A., Martino, M. N., & Zaritzky, N. E. (2000b). Microstructural characterization of plasticized starch-based films. Starch/Starke, 52, 118–124.

Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11, 697–702.

Gontard, N., Thibault, R., Cuq, B., & Guilbert, S. (1996). Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. Journal of Agricultural and Food Chemistry, 44(4), 1064–1069.

Han, J. H., Seo, G. H., Park, I. M., Kim, G. N., & Lee, D. S. (2006). Physical and mechanical properties of pea starch edible films containing beeswax emulsions. Journal of Food Science, 71(6), 290–296.

Handley, D., Ma-Edmonds, M., Hamouz, F., Cuppett, S., Mandigo, R., & Schnepf, M. (1996). Controlling oxidation and warmed-over flavor in precooked pork chops with rosemary oleoresin and edible film. In F. Shahidi (Ed.), Natural antioxidants chemistry, health effects and applications (pp. 311–318). Champaign: AOCS Press.

Hanlon, J. F. (1992). Films and foils. In Technomic: handbook of package engineering (pp. 3.1–3.59). Lancaster: Technomic Publishing Co.

Hargens-Madsen, M., Schnepf, M., Hamouz, F., Weller, C., & Roy, S. (1995). Use of edible films and tocopherol in the control of warmed over flavor. Journal of the Academy of Nutrition and Dietetics, 95, A – 41.

Hernández, O., Emaldi, U., & Tovar, J. (2008). In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers, 71, 648–655.

Hodge, S., & Osman, M. (1976). Carbohydrates. In O. Fennema (Ed.), Principles of food science, Part 1, food chemistry (pp. 41–138). New York: Marcel Dekker.

Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267.

Hosokawa, M., Nogi, K., Makio, N., & Yokoyama, T. (2008). Nanoparticle technology handbook. Amsterdam: Elsevier.

Hu, G., Chen, J., & Gao, J. (2009). Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers, 76, 291–298.

Jenkins, P. J., & Donald, A. M. (1998). Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydrate Research, 308(1–2), 133–147.

Jenkins, P. J., Cameron, R. E., & Donald, A. M. (1993). A universal feature in the structure of starch granules from different botanical sources. Starch/Stärke, 45(12), 417–420.

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2010). Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids. Carbohydrates Polymers, 82, 585–593.

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310.

Kim, M., & Lee, S. J. (2002). Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydrate Polymers, 50(4), 331–337.

Kim, K. W., Ko, C. J., & Park, H. J. (2002). Mechanical properties, water vapor permeabilities and solubilities of highly carboxymethylated starch-based edible films. Journal of Food Science, 67(1), 218–222.

Kristo, E., & Biliaderis, C. G. (2007). Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydrate Polymers, 68(1), 146–158.

Kroger, M., & Igoe, R. S. (1971). Edible containers. Food Product Development, 5, 74–82.

Lai, T. Y., Chen, C. H., & Lai, L. S. (2011). Effects of tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the quality of minimally processed carrots. Food and Bioprocess Technology, accepted manuscript. doi: 10.1007/s11947-011-0707-3 .

Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., et al. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106, 95–101.

Limpisophon, K., Tanaka, M., & Osako, K. (2010). Characterization of gelatin-fatty acid emulsion films based on blue shark (Prionace glauca) skin gelatin. Food Chemistry, 122(4), 1095–1101.

Liu, Z. (2005). Edible films and coatings from starch. In J. H. Han (Ed.), Innovations in food packaging (pp. 318–332). London: Elsevier Academic Press.

Liu, Q., & Thompson, D. B. (1998). Retrogradation of du wx and su2 wx maize starches after different gelatinization heat treatments. Cereal Chemistry, 75(6), 868–874.

Liu, H., Lelievre, J., & Ayoung-Chee, W. (1991). A study of starch gelatinization using differential scanning calorimetry, X-ray, and birefringence measurements. Carbohydrate Research, 210, 79–87.

Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348–1368.

López, O. V., García, M. A., & Zaritzky, N. E. (2008). Film forming capacity of chemically modified corn starches. Carbohydrate Polymers, 73(4), 573–581.

Lourdin, D., Della Valle, G., & Colonna, P. (1995). Influence of amylose content on starch films and foams. Carbohydrate Polymers, 27(4), 261–270.

Love, J. D. (1988). Sensory analysis of warmed-over flavor in meat. Food Technology, 42(6), 140–143.

Lu, Y., Tighzert, L., Berzin, F., & Rondot, S. (2005). Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydrate Polymers, 61(2), 174–182.

Ma-Edmonds, M., Hamouz, F., Cuppett, S., Madigo, R., & Schnepf, M. (1995). Use of rosemary oleoresin and edible film to control warmed-over flavor in pre-cooked beef patties. Abstract No. 50–6 IFT Annual Meeting. Anaheim, CA.

Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50, 379–386.

Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2004). Barrier, mechanical and optical properties of plasticized yam starch films. Carbolydrate Polymers, 56(2), 129–135.

Mali, S., Grossman, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453–460.

Mathew, S., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydrocolloids, 22, 826–835.

Morgan, B. H. (1971). Edible packaging update. Food Product Development, 5(6), 75–77. 108.

Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009a). Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydrate Polymers, 77, 293–299.

Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009b). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328–1333.

Müller, C. M. O., Laurindo, J. B., & Yamashita. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33, 605–610.

Nakazawa, Y., & Wang, Y.-J. (2004). Effect of annealing on starch-palmitic acid interaction. Carbohydrate Polymers, 57, 327–335.

Osés, J., Fernández-Pan, I., Mendoza, M., & Maté, J. I. (2009). Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity. Food Hydrocolloids, 23(1), 125–131.

Osés, J., Niza, S., Ziani, K., & Mate, J. I. (2009). Potato starch edible films to control oxidative rancidity of polyunsaturated lipid: effects of film composition, thickness and water activity. International Journal of Food Science and Technology, 44, 1360–1366.

Paes, S. S., Yakimets, I., & Mitchell, J. R. (2008). Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocolloids, 22, 788–797.

Pagella, C., Spigno, G., & De Faveri, D. M. (2002). Characterization of starch based edible coatings. Food and Bioproducts Processing, 80(3), 193–198.

Petersson, M., & Stading, M. (2005). Water vapour permeability and mechanical properties of mixed starch-monoglyceride films and effect of film forming conditions. Food Hydrocolloids, 19, 123–132.

Phan The, D., Debeaufort, F., Voilley, A., & Luu, D. (2009). Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arobinoxylan blends. Journal of Food Engineering, 90, 548–558.

Psomiadou, E., Arvanitoyannis, I., & Yamamoto, N. (1996). Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols—Part 2. Carbohydrate Polymers, 31(4), 193–204.

Pushpadass, H. A., Marx, D. B., & Hanna, M. A. (2008). Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch/Stärke, 60, 527–538.

Pyla, R., Kim, T. J., Silva, J. L., & Jung, Y. S. (2010). Enhanced antimicrobial activity of starch-based film impregnated with thermally processed tannic acid, a strong antioxidant. International Journal of Food Microbiology, 137(2–3), 154–160.

Ratnayake, W. S., & Jackson, D. S. (2007). A new insight into the gelatinization process of native starches. Carbohydrate Polymers, 67, 511–529.

Reddy, N., & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118, 702–711.

Rhim, J. W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411–433.

Rindlav, A., Hulleman, S. H. D., & Gatenholm, P. (1997). Formation of starch films with varying crystallinity. Carbohydrate Polymers, 34, 25–30.

Rodríguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840–846.

Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J., & Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60, 235–244.

Ronda, F., & Roos, Y. H. (2008). Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydrate Research, 343(5), 903–911.

Sacharow, S. (1972). Edible films. Packaging, 43(8), 6–9.

Salame, M. (1986). Barrier Polymers. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 48–54). New York: Wiley.

Salleh, E., Muhamad, I., & Khairuddin, N. (2009). Structural characterization and physical properties of antimicrobial (AM) starch-based films. World Academy of Science, Engineering and Technology, 55, 432–440.

Shellhammer, T. H., & Krochta, J. M. (1997). Edible coating and film barriers. In F. D. Gunstone & F. B. Padley (Eds.), Lipids-industrial applications and technology (pp. 453–479). New York: Marcel Dekker.

Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290.

Smith, A. M. (2001). The biosynthesis of starch granules. Biomacromolecules, 2(2), 335–341.

Sothornvit, R., & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of beta-globulin (β-Lg) films. Journal of Food Engineering, 50(3), 149–155.

Srichuwong, S., Sunarti, T. C., Mishima, T., Isono, N., & Hisamatsu, M. (2005). Starches from different botanical sources 1: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydrate Polymers, 60(4), 529–538.

St. Angelo, A. J., & Bailey, M. F. (1987). Warmed over flavor in meats (p. 294). Orlando: Academic.

Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288–295.

Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2008). Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydrate Polymers, 71, 269–276.

Tan, I., Wee, C. C., Sopade, P. A., & Halley, P. J. (2004). Investigation of the starch gelatinisation phenomena in water-glycerol systems: application of modulated temperature differential scanning calorimetry. Carbohydrate Polymers, 58, 191–204.

Tang, X., Alavi, S., & Herald, T. J. (2008). Effect of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydrate Polymers, 74, 552–558.

Tang, H., Xiong, H., Tang, S., & Zou, P. (2009). A starch-based biodegradable film modified by nano silicon dioxide. Journal of Applied Polymer Science, 113(1), 34–40.

Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78.

Thomas, D. J., & Atwell, W. A. (1997). Starches. St. Paul: Eagan Press Handbook Series.

Thunwall, M., Kuthanová, V., Boldizar, A., & Rigdahl, M. (2008). Film blowing of thermoplastic starch. Carbohydrate Polymers, 71, 583–590.

Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Research International, 42, 762–769.

Vázquez, A., & Álvarez, V. A. (2009). Starch-cellulose fiber composites. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 241–286). New York: Wiley.

Whistler, R. L., BeMiller, J. N., & Paschall, B. F. (1984). Starch: chemistry and technology (2nd ed.). New York: Academic.

Wilhelm, H.-M., Sierakowski, M.-R., Souza, G. P., & Wypych, F. (2003). Starch films reinforced with mineral clay. Carbohydrate Polymers, 52, 101–110.

Wong, D. W. S., Camirand, W. M., & Pavlath, A. E. (1994). Development of edible coatings for minimally processed fruits and vegetables. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 65–88). Lancaster: Technomic Publishing Company.

Wongsasulak, S., Yoovidhya, T., Bhumiratana, S., Hongsprabhas, P., McClements, D. J., & Weiss, J. (2006). Thermo-mechanical properties of egg albumen-cassava starch composite films containing sunflower-oil droplets as influenced by moisture content. Food Research International, 39, 277–284.

Wu, Y., Weller, C. L., Hamouz, F., Cuppet, S., & Schnepf, M. (2001). Moisture loss and lipid oxidation forprecooked ground-beef patties packaged in edible starch alginate-based composite films. Journal of Food Science, 66(3), 486–493.

Wu, R. L., Wang, X. L., Li, F., Li, H. Z., & Wang, Y. Z. (2009). Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresource Technology, 100, 2569–2574.

Wu, Y., Geng, F., Chang, P. R., Yu, J., & Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers, 76, 299–304.

Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering, 30, 891–897.

Yu, L., & Chen, L. (2009). Polymers from renewable resources. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 1–15). New York: Wiley.

Yu, J., Yang, J., Liu, B., & Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresource Technology, 100(1), 2832–2841.

Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57, 83–88.

Zhong, F., Li, Y., Ibanz, A. M., Oh, M. H., Mckenzie, K. S., & Shoemaker, C. (2009). The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starch pastes. Food Hydrocolloids, 23, 406–414.

Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84, 335–342.

Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C. (2007). Effect of the addition of fatty acids on rice starch properties. Food Research International, 40, 209–214.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record