- -

Edible and Biodegradable Starch Films: A Review

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Edible and Biodegradable Starch Films: A Review

Show simple item record

Files in this item

dc.contributor.author Jiménez Marco, Alberto es_ES
dc.contributor.author Fabra Rovira, María José es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.date.accessioned 2017-01-24T08:46:04Z
dc.date.available 2017-01-24T08:46:04Z
dc.date.issued 2012-08
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/77247
dc.description.abstract [EN] Mainly due to environmental aims, petroleum-based plastics are being replaced by natural polymers. In the last decades, starch has been evaluated in its film-forming ability for applications in the food packaging area. Characteristics of the starch film matrices, the film formation methods, and physicochemical properties of the starch films are reviewed in this paper. The influences of different components added in casting methods and thermoplastic processes have been also analyzed. Comparison of mechanical properties of newly prepared starch films and stored films reveals that the recrystallization phenomenon made the films more rigid and less stretchable. These effects can be inhibited by adding other polymers to the starch matrix. Other approaches to improve the starch films' properties are the reinforcement by adding organic or inorganic fillers to the starch matrix as well as the addition of functional compounds. In this way starch films have improved mechanical and barrier properties and can act as a bioactive packaging. Physicochemical properties of the starch films showed a great variability depending on the compounds added to the matrix and the processing method. Nevertheless, dry methods are more recommendable for film manufacturing because of the greater feasibility of the industrial process. In this sense, a better understanding of the nano and microstructural changes occurring in the matrices and their impact on the film properties is required. © 2012 Springer Science+Business Media, LLC. es_ES
dc.description.sponsorship The authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia throughout the project AGL2010-20694, con-financed with FEDER founds. A. Jimenez also thanks Conselleria de Educacio de la Comunitat Valenciana for the FPI grant. Author M.J. Fabra thanks the Campus de Excelencia Internacional VLC/CAMPUS for their support.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation MEC/AGL2010-20694 es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biopolymer es_ES
dc.subject Casting es_ES
dc.subject Crystallinity es_ES
dc.subject Film formation es_ES
dc.subject Barrier properties es_ES
dc.subject Biodegradable starch es_ES
dc.subject Casting method es_ES
dc.subject Crystallinities es_ES
dc.subject Film formations es_ES
dc.subject Film properties es_ES
dc.subject Film-forming es_ES
dc.subject Food packaging es_ES
dc.subject Functional compounds es_ES
dc.subject Industrial processs es_ES
dc.subject Inorganic fillers es_ES
dc.subject Microstructural changes es_ES
dc.subject Physicochemical property es_ES
dc.subject Processing method es_ES
dc.subject Starch films es_ES
dc.subject Biopolymers es_ES
dc.subject Mechanical properties es_ES
dc.subject Starch es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Edible and Biodegradable Starch Films: A Review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-012-0835-4
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Jiménez Marco, A.; Fabra Rovira, MJ.; Talens Oliag, P.; Chiralt Boix, MA. (2012). Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology. 5(6):2058-2076. doi:10.1007/s11947-012-0835-4 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11947-012-0835-4 es_ES
dc.description.upvformatpinicio 2058 es_ES
dc.description.upvformatpfin 2076 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 224027 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia
dc.relation.references Abdorreza, M. N., Cheng, L. H., & Karim, A. A. (2011). Effect of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloids, 25, 56–60. es_ES
dc.relation.references Alves, V. D., Costa, N., & Colehoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrates Polymers, 79, 269–276. es_ES
dc.relation.references Anonymous. (1967). Edible packaging offers pluses for frozen meat, poultry. Quick Frozen Foods, 29, 165–167. 213–214. es_ES
dc.relation.references Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81, 839–848. es_ES
dc.relation.references Arvanitoyannis, I., & Biliaderis, C. G. (1998). Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chemistry, 62(3), 333–342. es_ES
dc.relation.references Arvanitoyannis, I., & Biliaderis, C. G. (1999). Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers, 38(1), 47–58. es_ES
dc.relation.references Arvanitoyannis, I. S., & Kassaveti, A. (2009). Starch–cellulose blends. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 19–53). New York: Wiley. es_ES
dc.relation.references Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., & Yamamoto, N. (1997). Edible films made from gelatin, soluble starch and polyols. Part III. Food Chemistry, 60, 593–604. es_ES
dc.relation.references Audic, J. L., & Chaufer, B. (2005). Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate. European Polymer Journal, 41, 1934–1942. es_ES
dc.relation.references Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467–474. es_ES
dc.relation.references Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56, 111–122. es_ES
dc.relation.references Bangyekan, C., Aht-Ong, D., & Srikulkit, K. (2006). Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63(1), 61–71. es_ES
dc.relation.references Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., dos Santos, R. M. C., da Silva, F. B. R., Prison, J. M., et al. (2008). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, 21(2), 85–89. es_ES
dc.relation.references Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80, 972–978. es_ES
dc.relation.references Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82, 17–25. es_ES
dc.relation.references Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch-chitosan blend biodegradable film. LWT—Food Science and Technology, 41, 1633–1641. es_ES
dc.relation.references Briston, J. H. (1986). Films, plastic. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 329–335). New York: Wiley. es_ES
dc.relation.references Brown, W. H., & Poon, T. (2005). Introduction to organic chemistry (3rd ed.). New York: Wiley. es_ES
dc.relation.references Burros, B. C., Young, L. A., & Carroad, P. A. (1987). Kinetics of corn meal gelatinization at high temperature and low moisture. Journal of Food Science, 52(5), 1372–1376. es_ES
dc.relation.references Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875. es_ES
dc.relation.references Carvalho, A. J. F. (2008). Starch: major sources, properties and applications as thermoplastic materials. In M. N. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources (pp. 321–342). Amsterdam: Elsevier. es_ES
dc.relation.references Carvalho, A. J. F., Curvelo, A. A. S., & Agnelli, J. A. M. (2001). A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 45(2), 189–194. es_ES
dc.relation.references Cheetham, N. W. H., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284. es_ES
dc.relation.references Chen, J., Liu, C., Chen, Y., Chen, Y., & Chang, P. R. (2008). Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydrate Polymers, 74, 946–952. es_ES
dc.relation.references Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88, 159–168. es_ES
dc.relation.references Chiotelli, E., & Le Meste, M. (2003). Effect of triglycerides on gelatinisation and rheological properties of concentrated potato starch preparations. Food Hydrocolloids, 17, 629–639. es_ES
dc.relation.references Chung, Y. L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E. P., & Lai, H. M. (2010). Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydrate Polymers, 79, 391–396. es_ES
dc.relation.references Claudy, P., Jabranes, S., & Létoffé, J. M. (1997). Annealing of glycerol glass: enthalpy, fictive temperature and glass transition change with annealing parameters. Thermochimica Acta, 293, 1–11. es_ES
dc.relation.references Curvelo, A. A. S., Carvalho, A. J. F., & Agnelli, J. A. M. (2001). Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydrate Polymers, 45(2), 183–188. es_ES
dc.relation.references Delville, J., Joly, C., Dole, P., & Bliard, C. (2003). Influence of photo crosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53, 373–381. es_ES
dc.relation.references Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51, 213–219. es_ES
dc.relation.references Dole, P., Joly, C., Espuche, E., Alric, I., & Gontard, N. (2004). Gas transport properties of starch based films. Carbohydrate Polymers, 58, 335–343. es_ES
dc.relation.references Donovan, J. W. (1979). Phase transitions of the starch–water system. Biopolymers, 18(2), 263–275. es_ES
dc.relation.references Durrani, C. M., & Donald, A. M. (1995). Physical characterization of amylopectin gels. Polymer Gels and Networks, 3(1), 1–27. es_ES
dc.relation.references Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173–1182. es_ES
dc.relation.references Enrione, J., Osorio, F., Pedreschi, F., & Hill, S. (2010). Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food Bioprocess Technology, 3(6), 791–796. es_ES
dc.relation.references Fabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393–400. es_ES
dc.relation.references Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of fatty acids and beeswax addition on properties of sodium caseinate dispersions and films. Biomacromolecules, 10, 1500–1507. es_ES
dc.relation.references Fakhouri, F. M., Fontes, L. C. B., Innocentini-Mei, L. H., & Collares-Queiroz, F. P. (2009). Effect of fatty acid addition on the properties of biopolymer films based on lipophilic maize starch and gelatin. Starch/Stärke, 61, 528–536. es_ES
dc.relation.references Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303. es_ES
dc.relation.references Famá, L., Flores, S. K., Gerschenson, L., & Goyanes, S. (2006). Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers, 66, 8–15. es_ES
dc.relation.references Famá, L., Goyanes, S., & Gerschenson, L. (2007). Influence of storage time at room temperature on the physicochemical properties of cassava starch films. Carbohydrate Polymers, 70, 265–273. es_ES
dc.relation.references Fernández-Cervera, M., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., et al. (2004). Physical stability and moisture sorption of aqueous chitosan–amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58, 69–76. es_ES
dc.relation.references Fishman, M. L., Coffin, D. R., Konstance, R. P., & Onwulata, C. I. (2000). Extrusion of pectin/starch blends plasticized with glycerol. Carbohydrate Polymers, 41(4), 317–325. es_ES
dc.relation.references Flores, S., Conte, A., Campos, C., Gerschenson, L., & Del Nobile, M. (2007). Mass transport properties of tapioca-based active edible films. Journal of Food Engineering, 81(3), 580–586. es_ES
dc.relation.references Forsell, P. M., Mikkilä, J. M., Moates, G. K., & Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch–glycerol–water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 34, 275–282. es_ES
dc.relation.references Frost, K., Barthes, J., Kaminski, D., Lascaris, E., Niere, J., & Shanks, R. (2011). Thermoplastic starch-silica-polyvinyl alcohol composites by reactive extrusion. Carbohydrate Polymers, 84(1), 343–350. es_ES
dc.relation.references García, M. A., Martino, M. N., & Zaritzky, N. E. (2000a). Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science, 65(6), 941–947. es_ES
dc.relation.references García, M. A., Martino, M. N., & Zaritzky, N. E. (2000b). Microstructural characterization of plasticized starch-based films. Starch/Starke, 52, 118–124. es_ES
dc.relation.references Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11, 697–702. es_ES
dc.relation.references Gontard, N., Thibault, R., Cuq, B., & Guilbert, S. (1996). Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. Journal of Agricultural and Food Chemistry, 44(4), 1064–1069. es_ES
dc.relation.references Han, J. H., Seo, G. H., Park, I. M., Kim, G. N., & Lee, D. S. (2006). Physical and mechanical properties of pea starch edible films containing beeswax emulsions. Journal of Food Science, 71(6), 290–296. es_ES
dc.relation.references Handley, D., Ma-Edmonds, M., Hamouz, F., Cuppett, S., Mandigo, R., & Schnepf, M. (1996). Controlling oxidation and warmed-over flavor in precooked pork chops with rosemary oleoresin and edible film. In F. Shahidi (Ed.), Natural antioxidants chemistry, health effects and applications (pp. 311–318). Champaign: AOCS Press. es_ES
dc.relation.references Hanlon, J. F. (1992). Films and foils. In Technomic: handbook of package engineering (pp. 3.1–3.59). Lancaster: Technomic Publishing Co. es_ES
dc.relation.references Hargens-Madsen, M., Schnepf, M., Hamouz, F., Weller, C., & Roy, S. (1995). Use of edible films and tocopherol in the control of warmed over flavor. Journal of the Academy of Nutrition and Dietetics, 95, A – 41. es_ES
dc.relation.references Hernández, O., Emaldi, U., & Tovar, J. (2008). In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers, 71, 648–655. es_ES
dc.relation.references Hodge, S., & Osman, M. (1976). Carbohydrates. In O. Fennema (Ed.), Principles of food science, Part 1, food chemistry (pp. 41–138). New York: Marcel Dekker. es_ES
dc.relation.references Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267. es_ES
dc.relation.references Hosokawa, M., Nogi, K., Makio, N., & Yokoyama, T. (2008). Nanoparticle technology handbook. Amsterdam: Elsevier. es_ES
dc.relation.references Hu, G., Chen, J., & Gao, J. (2009). Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers, 76, 291–298. es_ES
dc.relation.references Jenkins, P. J., & Donald, A. M. (1998). Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydrate Research, 308(1–2), 133–147. es_ES
dc.relation.references Jenkins, P. J., Cameron, R. E., & Donald, A. M. (1993). A universal feature in the structure of starch granules from different botanical sources. Starch/Stärke, 45(12), 417–420. es_ES
dc.relation.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2010). Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids. Carbohydrates Polymers, 82, 585–593. es_ES
dc.relation.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310. es_ES
dc.relation.references Kim, M., & Lee, S. J. (2002). Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydrate Polymers, 50(4), 331–337. es_ES
dc.relation.references Kim, K. W., Ko, C. J., & Park, H. J. (2002). Mechanical properties, water vapor permeabilities and solubilities of highly carboxymethylated starch-based edible films. Journal of Food Science, 67(1), 218–222. es_ES
dc.relation.references Kristo, E., & Biliaderis, C. G. (2007). Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydrate Polymers, 68(1), 146–158. es_ES
dc.relation.references Kroger, M., & Igoe, R. S. (1971). Edible containers. Food Product Development, 5, 74–82. es_ES
dc.relation.references Lai, T. Y., Chen, C. H., & Lai, L. S. (2011). Effects of tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the quality of minimally processed carrots. Food and Bioprocess Technology, accepted manuscript. doi: 10.1007/s11947-011-0707-3 . es_ES
dc.relation.references Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., et al. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106, 95–101. es_ES
dc.relation.references Limpisophon, K., Tanaka, M., & Osako, K. (2010). Characterization of gelatin-fatty acid emulsion films based on blue shark (Prionace glauca) skin gelatin. Food Chemistry, 122(4), 1095–1101. es_ES
dc.relation.references Liu, Z. (2005). Edible films and coatings from starch. In J. H. Han (Ed.), Innovations in food packaging (pp. 318–332). London: Elsevier Academic Press. es_ES
dc.relation.references Liu, Q., & Thompson, D. B. (1998). Retrogradation of du wx and su2 wx maize starches after different gelatinization heat treatments. Cereal Chemistry, 75(6), 868–874. es_ES
dc.relation.references Liu, H., Lelievre, J., & Ayoung-Chee, W. (1991). A study of starch gelatinization using differential scanning calorimetry, X-ray, and birefringence measurements. Carbohydrate Research, 210, 79–87. es_ES
dc.relation.references Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348–1368. es_ES
dc.relation.references López, O. V., García, M. A., & Zaritzky, N. E. (2008). Film forming capacity of chemically modified corn starches. Carbohydrate Polymers, 73(4), 573–581. es_ES
dc.relation.references Lourdin, D., Della Valle, G., & Colonna, P. (1995). Influence of amylose content on starch films and foams. Carbohydrate Polymers, 27(4), 261–270. es_ES
dc.relation.references Love, J. D. (1988). Sensory analysis of warmed-over flavor in meat. Food Technology, 42(6), 140–143. es_ES
dc.relation.references Lu, Y., Tighzert, L., Berzin, F., & Rondot, S. (2005). Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydrate Polymers, 61(2), 174–182. es_ES
dc.relation.references Ma-Edmonds, M., Hamouz, F., Cuppett, S., Madigo, R., & Schnepf, M. (1995). Use of rosemary oleoresin and edible film to control warmed-over flavor in pre-cooked beef patties. Abstract No. 50–6 IFT Annual Meeting. Anaheim, CA. es_ES
dc.relation.references Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50, 379–386. es_ES
dc.relation.references Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2004). Barrier, mechanical and optical properties of plasticized yam starch films. Carbolydrate Polymers, 56(2), 129–135. es_ES
dc.relation.references Mali, S., Grossman, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453–460. es_ES
dc.relation.references Mathew, S., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydrocolloids, 22, 826–835. es_ES
dc.relation.references Morgan, B. H. (1971). Edible packaging update. Food Product Development, 5(6), 75–77. 108. es_ES
dc.relation.references Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009a). Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydrate Polymers, 77, 293–299. es_ES
dc.relation.references Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009b). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328–1333. es_ES
dc.relation.references Müller, C. M. O., Laurindo, J. B., & Yamashita. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33, 605–610. es_ES
dc.relation.references Nakazawa, Y., & Wang, Y.-J. (2004). Effect of annealing on starch-palmitic acid interaction. Carbohydrate Polymers, 57, 327–335. es_ES
dc.relation.references Osés, J., Fernández-Pan, I., Mendoza, M., & Maté, J. I. (2009). Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity. Food Hydrocolloids, 23(1), 125–131. es_ES
dc.relation.references Osés, J., Niza, S., Ziani, K., & Mate, J. I. (2009). Potato starch edible films to control oxidative rancidity of polyunsaturated lipid: effects of film composition, thickness and water activity. International Journal of Food Science and Technology, 44, 1360–1366. es_ES
dc.relation.references Paes, S. S., Yakimets, I., & Mitchell, J. R. (2008). Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocolloids, 22, 788–797. es_ES
dc.relation.references Pagella, C., Spigno, G., & De Faveri, D. M. (2002). Characterization of starch based edible coatings. Food and Bioproducts Processing, 80(3), 193–198. es_ES
dc.relation.references Petersson, M., & Stading, M. (2005). Water vapour permeability and mechanical properties of mixed starch-monoglyceride films and effect of film forming conditions. Food Hydrocolloids, 19, 123–132. es_ES
dc.relation.references Phan The, D., Debeaufort, F., Voilley, A., & Luu, D. (2009). Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arobinoxylan blends. Journal of Food Engineering, 90, 548–558. es_ES
dc.relation.references Psomiadou, E., Arvanitoyannis, I., & Yamamoto, N. (1996). Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols—Part 2. Carbohydrate Polymers, 31(4), 193–204. es_ES
dc.relation.references Pushpadass, H. A., Marx, D. B., & Hanna, M. A. (2008). Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch/Stärke, 60, 527–538. es_ES
dc.relation.references Pyla, R., Kim, T. J., Silva, J. L., & Jung, Y. S. (2010). Enhanced antimicrobial activity of starch-based film impregnated with thermally processed tannic acid, a strong antioxidant. International Journal of Food Microbiology, 137(2–3), 154–160. es_ES
dc.relation.references Ratnayake, W. S., & Jackson, D. S. (2007). A new insight into the gelatinization process of native starches. Carbohydrate Polymers, 67, 511–529. es_ES
dc.relation.references Reddy, N., & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118, 702–711. es_ES
dc.relation.references Rhim, J. W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411–433. es_ES
dc.relation.references Rindlav, A., Hulleman, S. H. D., & Gatenholm, P. (1997). Formation of starch films with varying crystallinity. Carbohydrate Polymers, 34, 25–30. es_ES
dc.relation.references Rodríguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840–846. es_ES
dc.relation.references Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J., & Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60, 235–244. es_ES
dc.relation.references Ronda, F., & Roos, Y. H. (2008). Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydrate Research, 343(5), 903–911. es_ES
dc.relation.references Sacharow, S. (1972). Edible films. Packaging, 43(8), 6–9. es_ES
dc.relation.references Salame, M. (1986). Barrier Polymers. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 48–54). New York: Wiley. es_ES
dc.relation.references Salleh, E., Muhamad, I., & Khairuddin, N. (2009). Structural characterization and physical properties of antimicrobial (AM) starch-based films. World Academy of Science, Engineering and Technology, 55, 432–440. es_ES
dc.relation.references Shellhammer, T. H., & Krochta, J. M. (1997). Edible coating and film barriers. In F. D. Gunstone & F. B. Padley (Eds.), Lipids-industrial applications and technology (pp. 453–479). New York: Marcel Dekker. es_ES
dc.relation.references Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290. es_ES
dc.relation.references Smith, A. M. (2001). The biosynthesis of starch granules. Biomacromolecules, 2(2), 335–341. es_ES
dc.relation.references Sothornvit, R., & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of beta-globulin (β-Lg) films. Journal of Food Engineering, 50(3), 149–155. es_ES
dc.relation.references Srichuwong, S., Sunarti, T. C., Mishima, T., Isono, N., & Hisamatsu, M. (2005). Starches from different botanical sources 1: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydrate Polymers, 60(4), 529–538. es_ES
dc.relation.references St. Angelo, A. J., & Bailey, M. F. (1987). Warmed over flavor in meats (p. 294). Orlando: Academic. es_ES
dc.relation.references Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288–295. es_ES
dc.relation.references Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2008). Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydrate Polymers, 71, 269–276. es_ES
dc.relation.references Tan, I., Wee, C. C., Sopade, P. A., & Halley, P. J. (2004). Investigation of the starch gelatinisation phenomena in water-glycerol systems: application of modulated temperature differential scanning calorimetry. Carbohydrate Polymers, 58, 191–204. es_ES
dc.relation.references Tang, X., Alavi, S., & Herald, T. J. (2008). Effect of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydrate Polymers, 74, 552–558. es_ES
dc.relation.references Tang, H., Xiong, H., Tang, S., & Zou, P. (2009). A starch-based biodegradable film modified by nano silicon dioxide. Journal of Applied Polymer Science, 113(1), 34–40. es_ES
dc.relation.references Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78. es_ES
dc.relation.references Thomas, D. J., & Atwell, W. A. (1997). Starches. St. Paul: Eagan Press Handbook Series. es_ES
dc.relation.references Thunwall, M., Kuthanová, V., Boldizar, A., & Rigdahl, M. (2008). Film blowing of thermoplastic starch. Carbohydrate Polymers, 71, 583–590. es_ES
dc.relation.references Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Research International, 42, 762–769. es_ES
dc.relation.references Vázquez, A., & Álvarez, V. A. (2009). Starch-cellulose fiber composites. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 241–286). New York: Wiley. es_ES
dc.relation.references Whistler, R. L., BeMiller, J. N., & Paschall, B. F. (1984). Starch: chemistry and technology (2nd ed.). New York: Academic. es_ES
dc.relation.references Wilhelm, H.-M., Sierakowski, M.-R., Souza, G. P., & Wypych, F. (2003). Starch films reinforced with mineral clay. Carbohydrate Polymers, 52, 101–110. es_ES
dc.relation.references Wong, D. W. S., Camirand, W. M., & Pavlath, A. E. (1994). Development of edible coatings for minimally processed fruits and vegetables. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 65–88). Lancaster: Technomic Publishing Company. es_ES
dc.relation.references Wongsasulak, S., Yoovidhya, T., Bhumiratana, S., Hongsprabhas, P., McClements, D. J., & Weiss, J. (2006). Thermo-mechanical properties of egg albumen-cassava starch composite films containing sunflower-oil droplets as influenced by moisture content. Food Research International, 39, 277–284. es_ES
dc.relation.references Wu, Y., Weller, C. L., Hamouz, F., Cuppet, S., & Schnepf, M. (2001). Moisture loss and lipid oxidation forprecooked ground-beef patties packaged in edible starch alginate-based composite films. Journal of Food Science, 66(3), 486–493. es_ES
dc.relation.references Wu, R. L., Wang, X. L., Li, F., Li, H. Z., & Wang, Y. Z. (2009). Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresource Technology, 100, 2569–2574. es_ES
dc.relation.references Wu, Y., Geng, F., Chang, P. R., Yu, J., & Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers, 76, 299–304. es_ES
dc.relation.references Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering, 30, 891–897. es_ES
dc.relation.references Yu, L., & Chen, L. (2009). Polymers from renewable resources. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 1–15). New York: Wiley. es_ES
dc.relation.references Yu, J., Yang, J., Liu, B., & Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresource Technology, 100(1), 2832–2841. es_ES
dc.relation.references Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57, 83–88. es_ES
dc.relation.references Zhong, F., Li, Y., Ibanz, A. M., Oh, M. H., Mckenzie, K. S., & Shoemaker, C. (2009). The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starch pastes. Food Hydrocolloids, 23, 406–414. es_ES
dc.relation.references Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84, 335–342. es_ES
dc.relation.references Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C. (2007). Effect of the addition of fatty acids on rice starch properties. Food Research International, 40, 209–214. es_ES


This item appears in the following Collection(s)

Show simple item record