- -

Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images

Show full item record

Lorente, D.; Blasco Ivars, J.; Serrano López, AJ.; Soria Olivas, E.; Aleixos Borrás, MN.; Gómez Sanchís, J. (2013). Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images. Food and Bioprocess Technology. 6(12):3613-3619. doi:10.1007/s11947-012-0951-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/77408

Files in this item

Item Metadata

Title: Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images
Author:
UPV Unit: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Issued date:
Abstract:
Hyperspectral imaging systems allow to detect the initial stages of decay caused by fungi in citrus fruit automatically, instead of doing it manually under dangerous ultraviolet illumination, thus preventing the fungal ...[+]
Subjects: Citrus fruit , Computer vision , Decay , Feature selection , Hyperspectral imaging , Non-destructive inspection , ROC curve
Copyrigths: Reserva de todos los derechos
Source:
Food and Bioprocess Technology. (issn: 1935-5130 ) (eissn: 1935-5149 )
DOI: 10.1007/s11947-012-0951-1
Publisher:
Springer Verlag
Publisher version: http://dx.doi.org/10.1007/s11947-012-0951-1
Thanks:
This work has been partially funded by the Universitat de València through project UV-INV-AE11-41271, by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria de España (INIA) through research project ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record