- -

Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lorente, D. es_ES
dc.contributor.author Blasco Ivars, José es_ES
dc.contributor.author Serrano López, Antonio José es_ES
dc.contributor.author Soria Olivas, Emilio es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.contributor.author Gómez Sanchís, Juan es_ES
dc.date.accessioned 2017-01-27T12:12:52Z
dc.date.available 2017-01-27T12:12:52Z
dc.date.issued 2013-12
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/77408
dc.description.abstract Hyperspectral imaging systems allow to detect the initial stages of decay caused by fungi in citrus fruit automatically, instead of doing it manually under dangerous ultraviolet illumination, thus preventing the fungal infestation of other sound fruit and, consequently, the enormous economical losses generated. However, these systems present the disadvantage of generating a huge amount of data, which is necessary to select for achieving some result useful for the sector. There are numerous feature selection methods to reduce dimensionality of hyperspectral images. This work compares a feature selection method using the area under the receiver operating characteristic (ROC) curve with other common feature selection techniques, in order to select an optimal set of wavelengths effective in the detection of decay in a citrus fruit using hyperspectral images. This comparative study is done using images of mandarins with the pixels labelled in five different classes: two types of healthy skin, two types of decay and scars, ensuring that the ROC technique generally provides better results than the other methods. © 2012 Springer Science+Business Media, LLC. es_ES
dc.description.sponsorship This work has been partially funded by the Universitat de València through project UV-INV-AE11-41271, by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria de España (INIA) through research project RTA2009-00118-C02-01 and by the Ministerio de Ciencia e Innovación de España (MICINN) through research project DPI2010-19457, both projects with the support of European FEDER funds. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus fruit es_ES
dc.subject Computer vision es_ES
dc.subject Decay es_ES
dc.subject Feature selection es_ES
dc.subject Hyperspectral imaging es_ES
dc.subject Non-destructive inspection es_ES
dc.subject ROC curve es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-012-0951-1
dc.relation.projectID info:eu-repo/grantAgreement/UV//UV-INV-AE11-41271/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2009-00118-C02-01/ES/RTA2009-00118-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-19457/ES/DESARROLLO DE NUEVAS TECNICAS DE VISION POR COMPUTADOR BASADAS EN SISTEMAS MULTI-AGENTE E IMAGENES HIPERESPECTRALES PARA LA ESTIMACION AUTOMATICA DE LA CALIDAD DE LOS CITRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Lorente, D.; Blasco Ivars, J.; Serrano López, AJ.; Soria Olivas, E.; Aleixos Borrás, MN.; Gómez Sanchís, J. (2013). Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images. Food and Bioprocess Technology. 6(12):3613-3619. https://doi.org/10.1007/s11947-012-0951-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11947-012-0951-1 es_ES
dc.description.upvformatpinicio 3613 es_ES
dc.description.upvformatpfin 3619 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 229500 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Universitat de València es_ES
dc.description.references Abe, N., Kudo, M., Toyama, J., & Shimbo, M. (2000). A divergence criterion for classifier independent feature selection. Lecture notes in computer science. Advances in Pattern Recognition, 1876, 668–676. es_ES
dc.description.references Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393. es_ES
dc.description.references Bonnlander, B.V., & Weigend, A.S. (1994). Selecting input variables using mutual information and nonparametric density estimation. In: Proceedings of the 1994 International Symposium on Artificial Neural Networks (ISANN’94), Tainan, Taiwan, pp. 42–50. es_ES
dc.description.references Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159. es_ES
dc.description.references Choi, E., & Lee, C. (2003). Feature extraction based on the Bhattacharyya distance. Pattern Recognition, 36(8), 1703–1709. es_ES
dc.description.references Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504. es_ES
dc.description.references Eckert, J., & Eaks, I. (1989). Postharvest disorders and diseases of citrus. In W. Reuther, E. C. Calavan, & G. E. Carman (Eds.), The citrus industry. Berkeley: University California Press. es_ES
dc.description.references ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT, 41, 337–345. es_ES
dc.description.references ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52, 1–8. es_ES
dc.description.references Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. es_ES
dc.description.references Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86. es_ES
dc.description.references Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785. es_ES
dc.description.references Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70, 489–501. es_ES
dc.description.references Kondo, N., Ahmad, U., Monta, M., & Murase, H. (2000). Machine vision based quality evaluation of Iyokan orange fruit using neural networks. Computers and Electronics in Agriculture, 29, 135–147. es_ES
dc.description.references Kullback, S. (1987). The Kullback–Leibler distance. The American Statistician, 41, 340–341. es_ES
dc.description.references Kurita, M., Kondo, N., Shimizu, H., Ling, P., Falzea, P. D., Shiigi, T., et al. (2009). A double image acquisition system with visible and UV LEDs for citrus fruit. Journal of Robotics and Mechatronics, 21(4), 533–540. es_ES
dc.description.references Li, S., Liao, C., & Kwok, J. (2006). Gene feature extraction using T-test statistics and Kernel partial least squares. Lecture notes in computer science. Neural Information and Processing, 4234, 11–20. es_ES
dc.description.references Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78(1), 38–48. es_ES
dc.description.references Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2005). Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Applied Spectroscopy, 59(1), 78–85. es_ES
dc.description.references López-García, F., Andreu-García, A., Blasco, J., Aleixos, N., & Valiente, J. M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71, 189–197. es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2011). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0737-x . es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142. es_ES
dc.description.references Ouardighi, A., Akadi, A., Aboutajdine, D. (2007). Feature selection on supervised classification using Wilks lambda statistic. In: International Symposium on Computational Intelligence and Intelligent Informatics ISCIII07, 1, pp. 51–55. es_ES
dc.description.references Palou, L., Smilanik, J., Usall, J., & Viñas, I. (2001). Control postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Disease, 85, 371–376. es_ES
dc.description.references Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. es_ES
dc.description.references Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(1), S110–S122. es_ES
dc.description.references Ponsa, D., & López, A. (2007). Feature selection based on a new formulation of the minimal-redundancy-maximal-relevance criterion. Lecture notes in computer science. Pattern Recognition and Image Analysis, 4477, 47–54. es_ES
dc.description.references Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191. es_ES
dc.description.references Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108(1), 87–93. es_ES
dc.description.references Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learning Research, 5, 101–141. es_ES
dc.description.references Rodgers, J. L., & Nicewander, A. W. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66. es_ES
dc.description.references Serrano, A.J., Soria, E., Martín, J.D., Magdalena, R. Gómez, J. (2010). Feature selection using ROC curves on classification problems. In: International Joint Conference on Neural Networks, IJCNN 2010. 28th–30th July 2010. Barcelona, Spain. Proceedings, pp. 1980–1985. es_ES
dc.description.references Shih, F. Y. (2010). Image processing and pattern recognition: fundamentals and techniques. New York: Wiley-IEEE. es_ES
dc.description.references Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48, 341–346. es_ES
dc.description.references Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer. es_ES
dc.description.references Xing, J., Bravo, C., Jancsók, P. T., Ramon, H., & De Baerdemaeker, J. (2005). Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90(1), 27–36. es_ES
dc.description.references Zude, M. (Ed.). (2008). Optical monitoring of fresh and processed agricultural crops. Boca Raton: CRC. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem