- -

Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martin, Nuria es_ES
dc.contributor.author Boruntea, Cristian-Renato es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2017-02-01T12:27:16Z
dc.date.available 2017-02-01T12:27:16Z
dc.date.issued 2015
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/77513
dc.description.abstract By using a faujasite zeolite as the sole Si and Al source with simple ammonium cyclic cations, it has been possible to synthesize the SSZ-39 zeolite with high yields, and to prepare a catalyst for potential industrial applications in the SCR of NOx. es_ES
dc.description.sponsorship Financial support from the Spanish Government-MINECO through "Severo Ochoa'' (SEV 2012-0267), Consolider Ingenio 2010-Multicat, MAT2012-37160 and, Intramural-201480I015 is acknowledged. C. R. B. thanks the Danish Agency for Science Technology and Innovation for a PhD scholarship. The authors thank Isabel Millet for technical support. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HYDROTHERMAL CONVERSION es_ES
dc.subject NOX es_ES
dc.subject REDUCTION es_ES
dc.subject ZEOLITES es_ES
dc.subject SCR es_ES
dc.subject CATIONS es_ES
dc.subject SSZ-39 es_ES
dc.subject FAU es_ES
dc.subject NH3 es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5cc03200h
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ESPONJAS DE PROTONES COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV 2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO// Intramural-201480I015/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Martin, N.; Boruntea, C.; Moliner Marin, M.; Corma Canós, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications. 51(55):11030-11033. doi:10.1039/c5cc03200h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi. org/10.1039/c5cc03200h es_ES
dc.description.upvformatpinicio 11030 es_ES
dc.description.upvformatpfin 11033 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 55 es_ES
dc.relation.senia 297085 es_ES
dc.identifier.eissn 1364-548X
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 es_ES
dc.description.references Brandenberger, S., Kröcher, O., Tissler, A., & Althoff, R. (2008). The State of the Art in Selective Catalytic Reduction of NOxby Ammonia Using Metal‐Exchanged Zeolite Catalysts. Catalysis Reviews, 50(4), 492-531. doi:10.1080/01614940802480122 es_ES
dc.description.references Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022 es_ES
dc.description.references Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031 es_ES
dc.description.references Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025 es_ES
dc.description.references Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u es_ES
dc.description.references Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g es_ES
dc.description.references Dusselier, M., Schmidt, J. E., Moulton, R., Haymore, B., Hellums, M., & Davis, M. E. (2015). Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 27(7), 2695-2702. doi:10.1021/acs.chemmater.5b00651 es_ES
dc.description.references Maruo, T., Yamanaka, N., Tsunoji, N., Sadakane, M., & Sano, T. (2014). Facile Synthesis of AEI Zeolites by Hydrothermal Conversion of FAU Zeolites in the Presence of Tetraethylphosphonium Cations. Chemistry Letters, 43(3), 302-304. doi:10.1246/cl.130996 es_ES
dc.description.references Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c es_ES
dc.description.references Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183 es_ES
dc.description.references Yashiki, A., Honda, K., Fujimoto, A., Shibata, S., Ide, Y., Sadakane, M., & Sano, T. (2011). Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 325(1), 96-100. doi:10.1016/j.jcrysgro.2011.04.040 es_ES
dc.description.references Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024 es_ES
dc.description.references Goto, I., Itakura, M., Shibata, S., Honda, K., Ide, Y., Sadakane, M., & Sano, T. (2012). Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 158, 117-122. doi:10.1016/j.micromeso.2012.03.032 es_ES
dc.description.references Wang, J., Yu, T., Wang, X., Qi, G., Xue, J., Shen, M., & Li, W. (2012). The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR. Applied Catalysis B: Environmental, 127, 137-147. doi:10.1016/j.apcatb.2012.08.016 es_ES
dc.description.references WAN, Y., MA, J., WANG, Z., ZHOU, W., & KALIAGUINE, S. (2004). Selective catalytic reduction of NO over Cu-Al-MCM-41. Journal of Catalysis, 227(1), 242-252. doi:10.1016/j.jcat.2004.07.016 es_ES
dc.description.references Sultana, A., Nanba, T., Haneda, M., Sasaki, M., & Hamada, H. (2010). Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 101(1-2), 61-67. doi:10.1016/j.apcatb.2010.09.007 es_ES
dc.description.references Martínez-Franco, R., Moliner, M., Concepcion, P., Thogersen, J. R., & Corma, A. (2014). Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by «one-pot» processes. Journal of Catalysis, 314, 73-82. doi:10.1016/j.jcat.2014.03.018 es_ES
dc.description.references Ren, L., Zhu, L., Yang, C., Chen, Y., Sun, Q., Zhang, H., … Xiao, F.-S. (2011). Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chemical Communications, 47(35), 9789. doi:10.1039/c1cc12469b es_ES
dc.description.references Martínez-Franco, R., Moliner, M., Thogersen, J. R., & Corma, A. (2013). Efficient One-Pot Preparation of Cu-SSZ-13 Materials using Cooperative OSDAs for their Catalytic Application in the SCR of NOx. ChemCatChem, 5(11), 3316-3323. doi:10.1002/cctc.201300141 es_ES
dc.description.references Martínez-Franco, R., Moliner, M., Franch, C., Kustov, A., & Corma, A. (2012). Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Applied Catalysis B: Environmental, 127, 273-280. doi:10.1016/j.apcatb.2012.08.034 es_ES
dc.description.references Martínez-Franco, R., Moliner, M., & Corma, A. (2014). Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. Journal of Catalysis, 319, 36-43. doi:10.1016/j.jcat.2014.08.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem