- -

Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications

Mostrar el registro completo del ítem

Martin, N.; Boruntea, C.; Moliner Marin, M.; Corma Canós, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications. 51(55):11030-11033. doi:10.1039/c5cc03200h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/77513

Ficheros en el ítem

Metadatos del ítem

Título: Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications
Autor: Martin, Nuria Boruntea, Cristian-Renato Moliner Marin, Manuel Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
By using a faujasite zeolite as the sole Si and Al source with simple ammonium cyclic cations, it has been possible to synthesize the SSZ-39 zeolite with high yields, and to prepare a catalyst for potential industrial ...[+]
Palabras clave: HYDROTHERMAL CONVERSION , NOX , REDUCTION , ZEOLITES , SCR , CATIONS , SSZ-39 , FAU , NH3
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Communications. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/c5cc03200h
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi. org/10.1039/c5cc03200h
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ESPONJAS DE PROTONES COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/
info:eu-repo/grantAgreement/MINECO//SEV 2012-0267/
info:eu-repo/grantAgreement/MINECO// Intramural-201480I015/
Agradecimientos:
Financial support from the Spanish Government-MINECO through "Severo Ochoa'' (SEV 2012-0267), Consolider Ingenio 2010-Multicat, MAT2012-37160 and, Intramural-201480I015 is acknowledged. C. R. B. thanks the Danish Agency ...[+]
Tipo: Artículo

References

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

Brandenberger, S., Kröcher, O., Tissler, A., & Althoff, R. (2008). The State of the Art in Selective Catalytic Reduction of NOxby Ammonia Using Metal‐Exchanged Zeolite Catalysts. Catalysis Reviews, 50(4), 492-531. doi:10.1080/01614940802480122

Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022 [+]
Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

Brandenberger, S., Kröcher, O., Tissler, A., & Althoff, R. (2008). The State of the Art in Selective Catalytic Reduction of NOxby Ammonia Using Metal‐Exchanged Zeolite Catalysts. Catalysis Reviews, 50(4), 492-531. doi:10.1080/01614940802480122

Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022

Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., & Peden, C. H. F. (2010). Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 275(2), 187-190. doi:10.1016/j.jcat.2010.07.031

Fickel, D. W., & Lobo, R. F. (2009). Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C, 114(3), 1633-1640. doi:10.1021/jp9105025

Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u

Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g

Dusselier, M., Schmidt, J. E., Moulton, R., Haymore, B., Hellums, M., & Davis, M. E. (2015). Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 27(7), 2695-2702. doi:10.1021/acs.chemmater.5b00651

Maruo, T., Yamanaka, N., Tsunoji, N., Sadakane, M., & Sano, T. (2014). Facile Synthesis of AEI Zeolites by Hydrothermal Conversion of FAU Zeolites in the Presence of Tetraethylphosphonium Cations. Chemistry Letters, 43(3), 302-304. doi:10.1246/cl.130996

Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c

Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183

Yashiki, A., Honda, K., Fujimoto, A., Shibata, S., Ide, Y., Sadakane, M., & Sano, T. (2011). Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 325(1), 96-100. doi:10.1016/j.jcrysgro.2011.04.040

Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024

Goto, I., Itakura, M., Shibata, S., Honda, K., Ide, Y., Sadakane, M., & Sano, T. (2012). Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 158, 117-122. doi:10.1016/j.micromeso.2012.03.032

Wang, J., Yu, T., Wang, X., Qi, G., Xue, J., Shen, M., & Li, W. (2012). The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR. Applied Catalysis B: Environmental, 127, 137-147. doi:10.1016/j.apcatb.2012.08.016

WAN, Y., MA, J., WANG, Z., ZHOU, W., & KALIAGUINE, S. (2004). Selective catalytic reduction of NO over Cu-Al-MCM-41. Journal of Catalysis, 227(1), 242-252. doi:10.1016/j.jcat.2004.07.016

Sultana, A., Nanba, T., Haneda, M., Sasaki, M., & Hamada, H. (2010). Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 101(1-2), 61-67. doi:10.1016/j.apcatb.2010.09.007

Martínez-Franco, R., Moliner, M., Concepcion, P., Thogersen, J. R., & Corma, A. (2014). Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by «one-pot» processes. Journal of Catalysis, 314, 73-82. doi:10.1016/j.jcat.2014.03.018

Ren, L., Zhu, L., Yang, C., Chen, Y., Sun, Q., Zhang, H., … Xiao, F.-S. (2011). Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chemical Communications, 47(35), 9789. doi:10.1039/c1cc12469b

Martínez-Franco, R., Moliner, M., Thogersen, J. R., & Corma, A. (2013). Efficient One-Pot Preparation of Cu-SSZ-13 Materials using Cooperative OSDAs for their Catalytic Application in the SCR of NOx. ChemCatChem, 5(11), 3316-3323. doi:10.1002/cctc.201300141

Martínez-Franco, R., Moliner, M., Franch, C., Kustov, A., & Corma, A. (2012). Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Applied Catalysis B: Environmental, 127, 273-280. doi:10.1016/j.apcatb.2012.08.034

Martínez-Franco, R., Moliner, M., & Corma, A. (2014). Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. Journal of Catalysis, 319, 36-43. doi:10.1016/j.jcat.2014.08.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem