- -

Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform

Mostrar el registro completo del ítem

Cubero García, S.; Aleixos Borrás, MN.; Albert Gil, FE.; Torregrosa, A.; Ortiz Sánchez, MC.; García Navarrete, OL.; Blasco Ivars, J. (2014). Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precision Agriculture. 15(1):80-94. doi:10.1007/s11119-013-9324-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/77668

Ficheros en el ítem

Metadatos del ítem

Título: Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform
Autor: Cubero García, Sergio Aleixos Borrás, María Nuria Albert Gil, Francisco Eugenio Torregrosa, A. Ortiz Sánchez, María Coral García Navarrete, Óscar Leonardo Blasco Ivars, José
Entidad UPV: Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
The mechanisation and automation of citrus harvesting is considered to be one of the best options to reduce production costs. Computer vision technology has been shown to be a useful tool for fresh fruit and vegetable ...[+]
Palabras clave: Assisted harvesting , Mobile platform , Machine vision , Smart camera , Fruit pre-grading , Citrus fruits
Derechos de uso: Reserva de todos los derechos
Fuente:
Precision Agriculture. (issn: 1385-2256 ) (eissn: 1573-1618 )
DOI: 10.1007/s11119-013-9324-7
Editorial:
Springer Verlag
Versión del editor: http://dx.doi. org/10.1007/s11119-013-9324-7
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//RTA2009-00118-C02-02/ES/Optimización de los parámetros que afectan al desprendimiento y recogida de frutos cítricos mediante procedimientos mecánicos/ /
info:eu-repo/grantAgreement/MICINN//RTA2009-00118-C02-01/ES/RTA2009-00118-C02-01/
Agradecimientos:
This research work has been funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA) and the European FEDER funds (projects RTA2009-00118-C02-01 and RTA2009-00118-C02-02). The ...[+]
Tipo: Artículo

References

Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2008). Autonomous fruit picking machine: A robotic apple harvester. Springer Tracts in Advanced Robotics, 42, 531–539.

Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009a). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103, 137–145.

Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G., & Moltó, E. (2002). Robotic weed control using machine vision. Biosystems Engineering, 83(2), 149–157. [+]
Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2008). Autonomous fruit picking machine: A robotic apple harvester. Springer Tracts in Advanced Robotics, 42, 531–539.

Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009a). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103, 137–145.

Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G., & Moltó, E. (2002). Robotic weed control using machine vision. Biosystems Engineering, 83(2), 149–157.

Blasco, J., Cubero, S., Gómez-Sanchis, J., Mira, P., & Moltó, E. (2009b). Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. Journal of Food Engineering, 90, 27–34.

Chong, V. K., Monta, M., Ninomiya, K., Kondo, N., Namba, K., Terasaki, E., et al. (2008). Development of mobile eggplant grading robot for dynamic in-field variability sensing––manufacture of robot and performance test. Engineering in Agriculture, Environment and Food, 1(2), 68–76.

Coppock, G. E., & Jutras, P. J. (1960). Mechanizing citrus fruit harvesting. Transactions of the ASAE, 3(2), 130–132.

Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.

Cubero, S., Moltó, E., Gutiérrez, A., Aleixos, N., García-Navarrete, O. L., Juste, F., et al. (2010). Real-time inspection of fruit on a mobile harvesting platform in field conditions using computer vision. Progress in Agricultural Engineering Science, 6, 1–16.

DOGV. (2006). Diari Oficial de la Comunitat Valenciana, 5346, 30321–30328.

Edan, Y., Rogozin, D., Flash, T., & Miles, G. E. (2000). Robotic melon harvesting. IEEE Transactions on Robotics and Automation, 16(6), 831–834.

Ehsani, M. R., Grift, T. E., Maja, J. M., & Zhong, D. (2009). Two fruit counting techniques for citrus mechanical harvesting machinery. Computers and Electronics in Agriculture, 65(2), 186–191.

Feng, G., Qixin, C., & Masateru, N. (2008). Fruit detachment and classification method for strawberry harvesting robot. International Journal of Advanced Robotic Systems, 5(1), 41–48.

Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.

HunterLab. (2008). Applications note, 8(9) http://www.hunterlab.com/appnotes/an08_96a.pdf . Accessed Nov 2012.

Jiménez-Cuesta, M.J., Cuquerella, J., & Martínez-Jávega, J.M. (1981). Determination of a color index for citrus fruit degreening. In: Proceedings of the International Society of Citriculture, Tokyo (Japan), vol. 2 (pp. 750–753).

Jutras, P.J., & Coppock, G.E. (1958). Mechanization of citrus fruit picking. Florida State Horticultural Society, 71, 201,204.

Kohno, Y., Kondo, N., Iida, M., Kurita, M., Shiigi, T., Ogawa, Y., et al. (2011). Development of a mobile grading machine for citrus fruit. Engineering in Agriculture, Environment and Food, 4(1), 7–11.

Kondo, N. (2009). Robotization in fruit grading system. Sensors and Instrumentation for Food Quality, 3, 81–87.

Lee, W. S., & Slaughter, D. C. (2004). Recognition of partially occluded plant leaves using a modified Watershed algorithm. Transactions of the ASAE, 47, 1269–1280.

Lee, W. S., Slaughter, D. C., & Giles, D. K. (1999). Robotic weed control system for tomatoes. Precision Agriculture, 1(1), 95–113.

Li, Z., Li, P., & Liu, J. (2011). Physical and mechanical properties of tomato fruits as related to robot harvesting. Journal of Food Engineering, 103(2), 170–178.

Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142.

Mazzetto, F., Calcante, A., Mena, A., & Vercesi, A. (2010). Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture. Precision Agriculture, 11(6), 636–649.

McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.

Mizushima, A., & Lu, R. (2011). Cost benefits analysis of in-field presorting for the apple industry. Applied Engineering in Agriculture, 27(1), 33–40.

Muscato, G., Prestifilippo, M., Abbate, N., & Rizzuto, I. (2005). A prototype of an orange picking robot: Past history and experimental results. Industrial Robot, 32(2), 128–138.

Nieuwenhuizen, A. T., Hofstee, J. W., & van Henten, E. J. (2010). Adaptive detection of volunteer potato plants in sugar beet fields. Precision Agriculture, 11, 433–447.

Official Journal of European Communities. (2001). 14.09.2001. pp. L244/12–L244/18. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:244:0012:0018:EN:PDF . Accessed May 2013.

Ortiz, C., Blasco, J., Balasch, S., & Torregrosa, A. (2011). Shock absorbing surfaces for collecting fruit during the mechanical harvesting of citrus. Biosystems Engineering, 110, 2–9.

Qiao, J., Sasao, A., Shibusawa, S., Kondo, N., & Morimoto, E. (2004). Mobile fruit grading robot (part1)––Development of a robotic system for grading sweet peppers. Journal of the Japanese Society of Agricultural Machinery (JSAM), 66(2), 113–122.

Qiao, J., Sasao, A., Shibusawa, S., Kondo, N., & Morimoto, E. (2005). Mapping yield and quality using the mobile fruit grading robot. Biosystems Engineering, 90(2), 135–142.

Ruiz-Altisent, M., Ortiz-Cañavate, J., & Valero, C. (2004). Fruit and vegetables harvesting systems. In: R. Dris and S. M. Jain (Eds.), Production practices and quality assessment of food crops, vol. 1: Preharvest practice (pp. 261–285). Dordrecht: Kluwer.

Torregrosa, A., Gil, J., Ortiz, C., Ortí, E., & Martín, B. (2009). Mechanical harvesting of oranges and mandarins in Spain. Biosystems Engineering, 104(1), 18–24.

Vidal, A., Talens, P., Prats-Montalbán, J. M., Cubero, S., Albert, F., & Blasco, J. (2012). In-line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform. Food and Bioprocess Technology,. doi: 10.1007/s11947-012-1015-2 .

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem