- -

Comparing the efficiency of five algorithms applied to path planning for industrial robots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparing the efficiency of five algorithms applied to path planning for industrial robots

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author ABU-DAKKA, FARES JAWAD MOHD es_ES
dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.contributor.author Mata Amela, Vicente es_ES
dc.date.accessioned 2017-02-16T18:12:57Z
dc.date.available 2017-02-16T18:12:57Z
dc.date.issued 2012
dc.identifier.issn 0143-991X
dc.identifier.uri http://hdl.handle.net/10251/77972
dc.description This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here https://riunet.upv.es/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited. es_ES
dc.description.abstract Purpose The purpose of this paper is to compare the quality and efficiency of five methods for solving the path planning problem of industrial robots in complex environments. Design/methodology/approach In total, five methods are presented for solving the path planning problem and certain working parameters have been monitored using each method. These working parameters are the distance travelled by the robot and the computational time needed to find a solution. A comparison of results has been analyzed. Findings After this study, it could be easy to know which of the proposed methods is most suitable for application in each case, depending on the parameter the user wants to optimize. The findings have been summarized in the conclusion section. Research limitations/implications The five techniques which have been developed yield good results in general. Practical implications The algorithms introduced are able to solve the path planning problem for any industrial robot working with obstacles. Social implications The path planning algorithms help robots perform their tasks in a more efficient way because the path followed has been optimized and therefore they help human beings work together with the robots in order to obtain the best results from them. Originality/value The paper shows which algorithm offers the best results, depending on the example the user has to solve and the parameter to be optimized. es_ES
dc.language Inglés es_ES
dc.publisher Emerald es_ES
dc.relation.ispartof Industrial Robot: An International Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Programming and algorithm theory es_ES
dc.subject Robots es_ES
dc.subject Kinematics es_ES
dc.subject Industrial robots es_ES
dc.subject Path planning es_ES
dc.subject Collision avoidance es_ES
dc.subject Off-line programming es_ES
dc.subject Multi-arms robot es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Comparing the efficiency of five algorithms applied to path planning for industrial robots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1108/01439911211268787
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Rubio Montoya, FJ.; Abu-Dakka, FJM.; Valero Chuliá, FJ.; Mata Amela, V. (2012). Comparing the efficiency of five algorithms applied to path planning for industrial robots. Industrial Robot: An International Journal. 39(6):580-591. doi:10.1108/01439911211268787 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1108/01439911211268787 es_ES
dc.description.upvformatpinicio 580 es_ES
dc.description.upvformatpfin 591 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 231237 es_ES
dc.identifier.eissn 1758-5791
dc.description.references Brooks, R. A. (1983). Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(2), 190-197. doi:10.1109/tsmc.1983.6313112 es_ES
dc.description.references Brooks, R.A. and Lozano‐Pérez, T. (1983), “A subdivision algorithm configuration space for findpath with rotation”,International Joint Conference on Artificial Intelligence, pp. 799‐806. es_ES
dc.description.references Davidor, Y. (1991), “Genetic algorithms and robotics, a heuristic strategy for optimisation”,World Scientific Series and Automated Systems, Vol. 1. es_ES
dc.description.references Dubowsky, S. and Shiller, Z. (1984), “Optimal dynamic trajectories for robotic manipulators”,Fifth CISM‐IFToMM Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy, pp. 96‐103. es_ES
dc.description.references Fares, A.D., Valero, F., Mata, V. and Assad, I.F.I. (2007), “Path planning optimization of industrial robots using genetic algorithm”,Proceedings of 16th International Workshop on Robotics in Alpe‐Adria‐Danube Region, Liubliana, p. 104. es_ES
dc.description.references Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized Kinodynamic Motion Planning with Moving Obstacles. The International Journal of Robotics Research, 21(3), 233-255. doi:10.1177/027836402320556421 es_ES
dc.description.references Isto, P. (1996), “Path planning by multiheuristic search via subgoals”,Proceedings of the 27th International Symposium on Industrial Robots, CEU, pp. 712‐26. es_ES
dc.description.references Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566-580. doi:10.1109/70.508439 es_ES
dc.description.references Khatib, O. (1985), “Real‐time obstacle avoidance for manipulators and mobile robots”,IEEE International Conference on Robotics and Automation, St Louis, MO, USA, pp. 500‐5. es_ES
dc.description.references LaValle, S. M., & Hutchinson, S. A. (s. f.). Optimal motion planning for multiple robots having independent goals. Proceedings of IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1996.506594 es_ES
dc.description.references Lozano-Perez. (1983). Spatial Planning: A Configuration Space Approach. IEEE Transactions on Computers, C-32(2), 108-120. doi:10.1109/tc.1983.1676196 es_ES
dc.description.references Monteiro, D. C., & Madrid, M. K. (1999). Planning of robot trajectories with genetic algorithms. Proceedings of the First Workshop on Robot Motion and Control. RoMoCo’99 (Cat. No.99EX353). doi:10.1109/romoco.1999.791079 es_ES
dc.description.references Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. doi:10.1109/tssc.1968.300136 es_ES
dc.description.references Ó’Dúnlaing, C., & Yap, C. K. (1985). A «retraction» method for planning the motion of a disc. Journal of Algorithms, 6(1), 104-111. doi:10.1016/0196-6774(85)90021-5 es_ES
dc.description.references Rubio, F., Valero, F., Sunyer, J., & Mata, V. (2009). Direct step‐by‐step method for industrial robot path planning. Industrial Robot: An International Journal, 36(6), 594-607. doi:10.1108/01439910910994669 es_ES
dc.description.references Schwartz, J. T., & Sharir, M. (1983). On the «piano movers» problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics, 4(3), 298-351. doi:10.1016/0196-8858(83)90014-3 es_ES
dc.description.references Valero, F., Mata, V., Cuadrado, J. I., & Ceccarelli, M. (1996). A formulation for path planning of manipulators in complex environments by using adjacent configurations. Advanced Robotics, 11(1), 33-56. doi:10.1163/156855397x00038 es_ES
dc.description.references Yang, Z.Q., Liu, L.B. and Yang, W.D. (2008), “Flexible inspection path planning based on adaptive genetic algorithm”,Proceedings of Control and Decision Conference, China, pp. 1558‐63. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem