- -

CAM-Rob postprocessor based on a fuzzified redundancy resolution scheme

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CAM-Rob postprocessor based on a fuzzified redundancy resolution scheme

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andrés de la Esperanza, Francisco Javier es_ES
dc.contributor.author Gracia Calandin, Luis Ignacio es_ES
dc.contributor.author Tornero Montserrat, Josep es_ES
dc.date.accessioned 2017-02-17T14:47:34Z
dc.date.available 2017-02-17T14:47:34Z
dc.date.issued 2012-09
dc.identifier.issn 0268-3768
dc.identifier.uri http://hdl.handle.net/10251/78003
dc.description.abstract This work highlights the applicability of different redundancy resolution schemes to the postprocessing stage from a computer-aided manufacturing (CAM) system to an industrial redundant workcell. The inverse kinematic problem for redundant manipulators is not straightforward and, therefore, it is commonly solved using an iteratively approach based on redundant resolution schemes at the velocity level. In this work, two conceptions of redundancy resolution schemes are evaluated and a novel fuzzy inference system is developed to improve the performance during the toolpath tracking in order to avoid singularities and to maintain a preferred reference posture. For this purpose, the fuzzy inference engine properly adjusts the weight of each joint in the calculation of the performance criterion vectors. The proposed approach is validated in the real prototyping of a windmill blademold using a KUKA KR15/2manipulator mounted on a linear track and synchronized with a rotary table. To the authors knowledge, the proposed method and the results shown are novel in the context of postprocessing techniques from CAM systems to industrial robots devoted to milling works. With the same guidelines, the postprocessor programmed inside the CAM system is expected to be easily applicable not only to other industrial robots, but also for different applications such as welding or painting labors. es_ES
dc.description.sponsorship This research is partially supported by the Technical University of Valencia (PAID-00-09-3092, PAID-05-11-2640), project PROMETEO 2009/063 of Generalitat Valenciana and research project DPI2009-14744-C03-01 of the Spanish Government. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof International Journal of Advanced Manufacturing Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Redundant robot es_ES
dc.subject Fuzzy logic es_ES
dc.subject Robot milling es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title CAM-Rob postprocessor based on a fuzzified redundancy resolution scheme es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00170-011-3836-y
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-00-09-3092/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11-2640/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F063/ES/Investigaciones en diseño para la fabricación y producción automatizada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-14744-C03-01/ES/Diseño De Un Vehiculo De Inspeccion Submarina Autonoma Para Misiones Oceanograficas: Grupo De Investigacion Idf-Upv/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Andrés De La Esperanza, FJ.; Gracia Calandin, LI.; Tornero Montserrat, J. (2012). CAM-Rob postprocessor based on a fuzzified redundancy resolution scheme. International Journal of Advanced Manufacturing Technology. 62(5):705-718. https://doi.org/10.1007/s00170-011-3836-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00170-011-3836-y es_ES
dc.description.upvformatpinicio 705 es_ES
dc.description.upvformatpfin 718 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 234329 es_ES
dc.identifier.eissn 1433-3015
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Andres J, Gracia L, Tornero J (2011) Calibration and control of a redundant robotic workcell for milling tasks. Int J Comp Int Manuf 24(6):561–573 es_ES
dc.description.references Patel RV, Shadpey F (2005) Control of redundant robot manipulators: theory and experiments. Springer, New York es_ES
dc.description.references Hartenberg RS, Denavit J (1955) A kinematic notation for lower pair mechanisms based on matrices. Trans ASME J App Mech 77:215–221 es_ES
dc.description.references Andres J, Gracia L, Tornero J (2009) Inverse kinematics of a redundant manipulator for CAM integration. An industrial perspective of implementation, Proceedings of the 2009 IEEE International Conference on Mechatronics, Malaga es_ES
dc.description.references Whitney DE (1969) Resolved motion rate control of manipulators and human prostheses. IEEE Trans Man-Machine Syst 10(2):47–53 es_ES
dc.description.references Whitney DE (1972) The mathematics of coordinated control of prosthetic arms and manipulator, ASME J. Dyn Sys Meas Cont 94(4):303–309 es_ES
dc.description.references Angeles J (2003) Fundamentals of robotic mechanical systems: theory, methods and algorithms. Springer, New York es_ES
dc.description.references Huo L, Baron L (2008) The joint-limits and singularity avoidance in robotic welding. Industrial Robot 35(5):456–464 es_ES
dc.description.references Liégeois A (1977) Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern SMC-7:245–250 es_ES
dc.description.references Gracia L, Andres J, Tornero J (2009) Trajectory tracking with a 6R serial industrial robot with ordinary and non-ordinary singularities. Int J Cont Auto Syst 7(1):85–96 es_ES
dc.description.references Angeles J, López-Cajún CS (1992) Kinematic isotropy and the conditioning index of serial robotic manipulators. Int J Robot Res 11(6):560–570 es_ES
dc.description.references Khan WA, Angeles J (2006) The kinetostatic optimization of robotic manipulators: the inverse and the direct problems. J Mech Des 128(1):168–178 es_ES
dc.description.references Siemens Corp (2009) NX Documentation. In: {$UGII_base_dir}\UGDOC es_ES
dc.description.references Maza JI, Ollero A (2000) Herramienta MATLAB-Simulink para la simulación y el control de robots manipuladores y móviles, Actas de las XXI Jornadas de Automática, Sevilla, Spain es_ES
dc.description.references Roger Jang JS, Gulley N (2008) Fuzzy logic toolbox: user’s guide; revised for version 2.2.7. The Math Works, Inc. es_ES
dc.description.references Qdesign SRL (2007) CAD-CAM off line programming for industrial robots. ROBOmove on line help v. 2.0 [online]. Available from: http://www.qdrobotics.com/eng/robomove.php . Accessed 28 Nov 2011 es_ES
dc.description.references Andrés J, Gracia L, Marti H, Tornero J (2009) Toolpath postprocessing for three axes milling in redudant robotic workcells by means of fuzzy integration in a CAM platform, Proceedings of the IEEE International Conference on Mechatronics, Malaga, Spain es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem