- -

Duals of variable exponent Hörmander spaces ($0< p^- \le p^+ \le 1$) and some applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Duals of variable exponent Hörmander spaces ($0< p^- \le p^+ \le 1$) and some applications

Mostrar el registro completo del ítem

Motos Izquierdo, J.; Planells Gilabert, MJ.; Talavera Usano, CF. (2015). Duals of variable exponent Hörmander spaces ($0< p^- \le p^+ \le 1$) and some applications. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 109(2):657-668. https://doi.org/10.1007/s13398-014-0209-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/78069

Ficheros en el ítem

Metadatos del ítem

Título: Duals of variable exponent Hörmander spaces ($0< p^- \le p^+ \le 1$) and some applications
Autor: Motos Izquierdo, Joaquín Planells Gilabert, María Jesús Talavera Usano, César Félix
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this paper we characterize the dual $\bigl(\B^c_{p(\cdot)} (\Omega) \bigr)'$ of the variable exponent H\"or\-man\-der space $\B^c_{p(\cdot)} (\Omega)$ when the exponent $p(\cdot)$ satisfies the conditions $0 < p^- ...[+]
Palabras clave: Variable exponent , Hardy-Littlewood maximal operator , Banach envelope , $L_{p(\cdot)}$-spaces of entire analytic functions , H\"ormander spaces
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. (issn: 1578-7303 ) (eissn: 1579-1505 )
DOI: 10.1007/s13398-014-0209-z
Editorial:
Springer Verlag
Versión del editor: http://dx.doi. org/10.1007/s13398-014-0209-z
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2011-23164/ES/ANALISIS DE FOURIER MULTILINEAL, VECTORIAL Y SUS APLICACIONES/
Agradecimientos:
J. Motos is partially supported by grant MTM2011-23164 from the Spanish Ministry of Science and Innovation. The authors wish to thank the referees for the careful reading of the manuscript and for many helpful suggestions ...[+]
Tipo: Artículo

References

Aboulaich, R., Meskine, D., Souissi, A.: New diffussion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008)

Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)

Bastero, J.: $$l^q$$ l q -subspaces of stable $$p$$ p -Banach spaces, $$0 < p \le 1$$ 0 < p ≤ 1 . Arch. Math. (Basel) 40, 538–544 (1983) [+]
Aboulaich, R., Meskine, D., Souissi, A.: New diffussion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008)

Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)

Bastero, J.: $$l^q$$ l q -subspaces of stable $$p$$ p -Banach spaces, $$0 < p \le 1$$ 0 < p ≤ 1 . Arch. Math. (Basel) 40, 538–544 (1983)

Boas, R.P.: Entire functions. Academic Press, London (1954)

Boza, S.: Espacios de Hardy discretos y acotación de operadores. Dissertation, Universitat de Barcelona (1998)

Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue spaces, foundations and harmonic analysis. Birkhäuser, Basel (2013)

Cruz-Uribe, D.: SFO, A. Fiorenza, J. M. Martell, C. Pérez: The boundedness of classical operators on variable $$L^p$$ L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and sobolev spaces with variable exponents. lecture notes in mathematics, vol. 2007. Springer, Berlin, Heidelberg (2011)

Hörmander, L.: The analysis of linear partial operators II, Grundlehren 257. Springer, Berlin, Heidelberg (1983)

Hörmander, L.: The analysis of linear partial operators I, Grundlehren 256. Springer, Berlin, Heidelberg (1983)

Kalton, N.J., Peck, N.T., Roberts, J.W.: An $$F$$ F -space sampler, London Mathematical Society Lecture Notes, vol. 89. Cambridge University Press, Cambridge (1985)

Kalton, N.J.: Banach envelopes of non-locally convex spaces. Canad. J. Math. 38(1), 65–86 (1986)

Kalton, N.J., Mitrea, M.: Stability results on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350(10), 3903–3922 (1998)

Kalton, N.J.: Quasi-Banach spaces, Handbook of the Geometry of Banach Spaces, vol. 2. In: Johnson, W.B., Lindenstrauss, J. (eds.), pp. 1099–1130. Elsevier, Amsterdam (2003)

Köthe, G.: Topological vector spaces I. Springer, Berlin, Heidelberg (1969)

Motos, J., Planells, M.J., Talavera, C.F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388, 775–787 (2012)

Motos, J., Planells, M.J., Talavera, C.F.: A note on variable exponent Hörmander spaces. Mediterr. J. Math. 10, 1419–1434 (2013)

Stiles, W.J.: Some properties of $$l_p$$ l p , $$0 < p < 1$$ 0 < p < 1 . Studia Math. 42, 109–119 (1972)

Triebel, H.: Theory of function spaces. Birkhäuser, Basel (1983)

Vogt, D.: Sequence space representations of spaces of test functions and distributions. In: Zapata, G.I. (ed.) Functional analysis, holomorphy and approximation theory, Lecture Notes in Pure and Applied Mathematics, vol. 83, pp. 405–443 (1983)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem