Mostrar el registro sencillo del ítem
dc.contributor.author | Motos Izquierdo, Joaquín![]() |
es_ES |
dc.contributor.author | Planells Gilabert, María Jesús![]() |
es_ES |
dc.contributor.author | Talavera Usano, César Félix![]() |
es_ES |
dc.date.accessioned | 2017-02-20T13:47:13Z | |
dc.date.available | 2017-02-20T13:47:13Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 1578-7303 | |
dc.identifier.uri | http://hdl.handle.net/10251/78069 | |
dc.description.abstract | In this paper we characterize the dual $\bigl(\B^c_{p(\cdot)} (\Omega) \bigr)'$ of the variable exponent H\"or\-man\-der space $\B^c_{p(\cdot)} (\Omega)$ when the exponent $p(\cdot)$ satisfies the conditions $0 < p^- \le p^+ \le 1$, the Hardy-Littlewood maximal operator $M$ is bounded on $L_{p(\cdot)/p_0}$ for some $0 < p_0 < p^-$ and $\Omega$ is an open set in $\R^n$. It is shown that the dual $\bigl(\B^c_{p(\cdot)} (\Omega) \bigr)'$ is isomorphic to the H\"ormander space $\B^{\mathrm{loc}}_\infty (\Omega)$ (this is the $p^+ \le 1$ counterpart of the isomorphism $\bigl(\B^c_{p(\cdot)} (\Omega) \bigr)' \simeq \B^{\mathrm{loc}}_{\widetilde{p'(\cdot)}} (\Omega)$, $1 < p^- \le p^+ < \infty$, recently proved by the authors) and hence the representation theorem $\bigl( \B^c_{p(\cdot)} (\Omega) \bigr)' \simeq l^{\N}_\infty$ is obtained. Our proof relies heavily on the properties of the Banach envelopes of the steps of $\B^c_{p(\cdot)} (\Omega)$ and on the extrapolation theorems in the variable Lebesgue spaces of entire analytic functions obtained in a precedent paper. Other results for $p(\cdot) \equiv p$, $0 < p < 1$, are also given (e.g. $\B^c_p (\Omega)$ does not contain any infinite-dimensional $q$-Banach subspace with $p < q \le 1$ or the quasi-Banach space $\B_p \cap \E'(Q)$ contains a copy of $l_p$ when $Q$ is a cube in $\R^n$). Finally, a question on complex interpolation (in the sense of Kalton) of variable exponent H\"ormander spaces is proposed. | es_ES |
dc.description.sponsorship | J. Motos is partially supported by grant MTM2011-23164 from the Spanish Ministry of Science and Innovation. The authors wish to thank the referees for the careful reading of the manuscript and for many helpful suggestions and remarks that improved the exposition. In particular, the remark immediately following Theorem 2.1 and the Question 2 were motivated by the comments of one of them. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag | es_ES |
dc.relation.ispartof | Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Variable exponent | es_ES |
dc.subject | Hardy-Littlewood maximal operator | es_ES |
dc.subject | Banach envelope | es_ES |
dc.subject | $L_{p(\cdot)}$-spaces of entire analytic functions | es_ES |
dc.subject | H\"ormander spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Duals of variable exponent Hörmander spaces ($0< p^- \le p^+ \le 1$) and some applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-014-0209-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-23164/ES/ANALISIS DE FOURIER MULTILINEAL, VECTORIAL Y SUS APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Motos Izquierdo, J.; Planells Gilabert, MJ.; Talavera Usano, CF. (2015). Duals of variable exponent Hörmander spaces ($0< p^- \le p^+ \le 1$) and some applications. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 109(2):657-668. https://doi.org/10.1007/s13398-014-0209-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi. org/10.1007/s13398-014-0209-z | es_ES |
dc.description.upvformatpinicio | 657 | es_ES |
dc.description.upvformatpfin | 668 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 109 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 285925 | es_ES |
dc.identifier.eissn | 1579-1505 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Aboulaich, R., Meskine, D., Souissi, A.: New diffussion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008) | es_ES |
dc.description.references | Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002) | es_ES |
dc.description.references | Bastero, J.: $$l^q$$ l q -subspaces of stable $$p$$ p -Banach spaces, $$0 < p \le 1$$ 0 < p ≤ 1 . Arch. Math. (Basel) 40, 538–544 (1983) | es_ES |
dc.description.references | Boas, R.P.: Entire functions. Academic Press, London (1954) | es_ES |
dc.description.references | Boza, S.: Espacios de Hardy discretos y acotación de operadores. Dissertation, Universitat de Barcelona (1998) | es_ES |
dc.description.references | Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue spaces, foundations and harmonic analysis. Birkhäuser, Basel (2013) | es_ES |
dc.description.references | Cruz-Uribe, D.: SFO, A. Fiorenza, J. M. Martell, C. Pérez: The boundedness of classical operators on variable $$L^p$$ L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006) | es_ES |
dc.description.references | Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and sobolev spaces with variable exponents. lecture notes in mathematics, vol. 2007. Springer, Berlin, Heidelberg (2011) | es_ES |
dc.description.references | Hörmander, L.: The analysis of linear partial operators II, Grundlehren 257. Springer, Berlin, Heidelberg (1983) | es_ES |
dc.description.references | Hörmander, L.: The analysis of linear partial operators I, Grundlehren 256. Springer, Berlin, Heidelberg (1983) | es_ES |
dc.description.references | Kalton, N.J., Peck, N.T., Roberts, J.W.: An $$F$$ F -space sampler, London Mathematical Society Lecture Notes, vol. 89. Cambridge University Press, Cambridge (1985) | es_ES |
dc.description.references | Kalton, N.J.: Banach envelopes of non-locally convex spaces. Canad. J. Math. 38(1), 65–86 (1986) | es_ES |
dc.description.references | Kalton, N.J., Mitrea, M.: Stability results on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350(10), 3903–3922 (1998) | es_ES |
dc.description.references | Kalton, N.J.: Quasi-Banach spaces, Handbook of the Geometry of Banach Spaces, vol. 2. In: Johnson, W.B., Lindenstrauss, J. (eds.), pp. 1099–1130. Elsevier, Amsterdam (2003) | es_ES |
dc.description.references | Köthe, G.: Topological vector spaces I. Springer, Berlin, Heidelberg (1969) | es_ES |
dc.description.references | Motos, J., Planells, M.J., Talavera, C.F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388, 775–787 (2012) | es_ES |
dc.description.references | Motos, J., Planells, M.J., Talavera, C.F.: A note on variable exponent Hörmander spaces. Mediterr. J. Math. 10, 1419–1434 (2013) | es_ES |
dc.description.references | Stiles, W.J.: Some properties of $$l_p$$ l p , $$0 < p < 1$$ 0 < p < 1 . Studia Math. 42, 109–119 (1972) | es_ES |
dc.description.references | Triebel, H.: Theory of function spaces. Birkhäuser, Basel (1983) | es_ES |
dc.description.references | Vogt, D.: Sequence space representations of spaces of test functions and distributions. In: Zapata, G.I. (ed.) Functional analysis, holomorphy and approximation theory, Lecture Notes in Pure and Applied Mathematics, vol. 83, pp. 405–443 (1983) | es_ES |