- -

Genotype x environment interactions in eggplant for fruit phenolic acid content

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genotype x environment interactions in eggplant for fruit phenolic acid content

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Stommel, John R. es_ES
dc.contributor.author Whitaker, Bruce es_ES
dc.contributor.author Haynes, K.G. es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.date.accessioned 2017-03-01T08:27:44Z
dc.date.available 2017-03-01T08:27:44Z
dc.date.issued 2015-10
dc.identifier.issn 0014-2336
dc.identifier.uri http://hdl.handle.net/10251/78402
dc.description.abstract Eggplant fruit are a rich source of phenolic acids that influence fruit culinary quality and antioxidant content. We evaluated the influence of production environments and stability of diverse genotypes across environments for eggplant fruit phenolic acid content. Ten Solanum melongena accessions consisting of five F-1 hybrid cultivars, three open-pollinated cultivars and two land race accessions, plus one S. macrocarpon and one S. aethiopicum accession, were grown at two locations under greenhouse and open field environments. Twenty phenolic acid conjugates were identified in fruit flesh and assigned to six classes that included hydroxycinnamic acid amides, caffeoylquinic acid esters, hydroxycinnamoylquinic acid esters, malonylcaffeoylquinic acid esters, di-hydroxycinnamoylquinic acid esters, and other hydroxycinnamic acid conjugates. There were significant differences among accessions for total phenolic acid conjugate content and for all six classes. There were no significant differences detected among the environments for any of the variables. However, the environment x accession interaction was highly significant for all phenolic acid classes. Broad-sense heritability estimates for all six phenolic acid classes were high, ranging from 0.64 to 0.96. Stability analysis demonstrated widespread instability for phenolic acid content across environments. Stability of the predominant caffeoylquinic acid esters class positively influenced stability of total phenolic acid content for some but not all genotypes. High heritability, coupled with highly significant genotype x environment interactions suggests that stability estimates may improve the efficiency of breeding new genotypes with predictable performance across environments. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Euphytica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Caffeoylquinic acid esters es_ES
dc.subject Fruit quality es_ES
dc.subject Heritability es_ES
dc.subject Hydroxycinnamic acids es_ES
dc.subject Phenolics es_ES
dc.subject Solanum melongena es_ES
dc.subject.classification GENETICA es_ES
dc.title Genotype x environment interactions in eggplant for fruit phenolic acid content es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10681-015-1415-2
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Stommel, JR.; Whitaker, B.; Haynes, K.; Prohens Tomás, J. (2015). Genotype x environment interactions in eggplant for fruit phenolic acid content. Euphytica. 205(3):823-836. doi:10.1007/s10681-015-1415-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10681-015-1415-2 es_ES
dc.description.upvformatpinicio 823 es_ES
dc.description.upvformatpfin 836 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 205 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 304427 es_ES
dc.identifier.eissn 1573-5060
dc.description.references Allard RW, Bradshaw AD (1964) Implications of genotype–environment interactions in applied plant breeding. Crop Sci 4:503–507 es_ES
dc.description.references Baixauli C (2001) Berenjena. In: Nuez F, Liacer G (eds) La horticultura española. Ediciones de Horticultura, Reus, pp 104–108 es_ES
dc.description.references Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333 es_ES
dc.description.references Dixon RA, Pavia NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097 es_ES
dc.description.references Dogan M, Arslan O, Dogan S (2002) Substrate specificity, heat inactivation and inhibition of polyphenol oxidase from different aubergine cultivars. Int J Food Sci Technol 37:415–423 es_ES
dc.description.references Dos Santos MD, Almeida MC, Lopes NP, de Souza GE (2006) Evaluation of the anti-inflammatory, analgesic and anti-pyretic activities of the natural polyphenol chlorogenic acid. Biol Pharm Bull 29:2236–2240 es_ES
dc.description.references Fernandez GCJ (1991) Analysis of genotype × environment interaction by stability estimates. HortScience 26:947–950 es_ES
dc.description.references García-Salas P, Gómez-Caravaca AM, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A (2014) Identification and quantification of phenolic compounds in diverse cultivars of eggplant grown in different seasons by high-performance liquid chromatography coupled to diode array detector and electrospray-quadrupole-time of flight-mass spectrometry. Food Res Int 57:114–122 es_ES
dc.description.references Hanson PM, Yang RY, Tsou SCS, Ledesma K, Engle L, Lee TC (2006) Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. J Food Compos Anal 19:594–600 es_ES
dc.description.references Kang MS (1989) A new SAS program for calculating stability variance parameters. J Hered 80:415 es_ES
dc.description.references Klein RM (1990) Failure of supplementary ultraviolet radiation to enhance flower color under greenhouse conditions. HortScience 25:307–308 es_ES
dc.description.references Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194 es_ES
dc.description.references Luthria D, Singh AP, Wilson T, Vorsa N, Banuelos GS, Vinyard BT (2010) Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: plant to plant variation. Food Chem 121:406–411 es_ES
dc.description.references Ma C, Whitaker BD, Kennelly EJ (2010) New 5-O-caffeoylquinic acid derivatives in fruit of wild eggplant relative S. viarum. J Agric Food Chem 58:9645–9651 es_ES
dc.description.references Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747 es_ES
dc.description.references Mennella G, Scalzo R, Fibiani M, D’Alessandro A, Francese G, Toppino L, Acciarri N, Almeida AE, Rotino GL (2012) Chemical and bioactive quality traits during fruit ripening in eggplant (S. melongena L.) and allied species. J Agric Food Chem 60:11821–11831 es_ES
dc.description.references Meyer RS, Karol KG, Little DP, Nee MH, Litt A (2012) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogenet Evol 63:685–701 es_ES
dc.description.references Ong KW, Hsu A, Tan BK (2012) Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7:e32718 es_ES
dc.description.references Payyavula RS, Duroy AN, Kuhl JC, Pantoha A, Pillai SS (2012) Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol 12:39 es_ES
dc.description.references Plazas M, Prohens J, Cuñat AN, Vilanova S, Gramazio P, Herraiz FJ, Andújar I (2014) Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. Int J Mol Sci 15:17221–17241 es_ES
dc.description.references Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 78:570S–578S es_ES
dc.description.references Pritts M, Luby J (1990) Stability indices for horticultural crops. HortScience 25:740–745 es_ES
dc.description.references Prohens J, Rodriguez-Burruezo A, Raigon MD, Nuez F (2007) Total phenolic acid concentration and browning susceptibility in a collection of different varietal types and hybrids of eggplant: implications for breeding for higher nutritional quality and reduced browning. J Am Soc Hortic Sci 132:638–646 es_ES
dc.description.references Prohens J, Whitaker BD, Plazas M, Vilanova S, Hurtado M, Blasco M, Gramazio P, Stommel JR (2013) Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incancum). Ann Appl Biol 162:242–257 es_ES
dc.description.references Raigon MD, Prohens J, Munoz-Falcon JE, Nuez F (2008) Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. J Food Compos Anal 21:370–376 es_ES
dc.description.references Raigon MD, Rodriguez-Burruezo A, Prohens J (2010) Effects of organic and conventional cultivation methods on composition of eggplant fruits. Agric Food Chem 58:6833–6840 es_ES
dc.description.references San Jose R, Sanchez-Mata MC, Camara M, Prohens J (2014) Eggplant fruit composition as affected by the cultivation environment and genetic constitution. J Sci Food Agric 94:2774–2784 es_ES
dc.description.references Sato Y, Itagaki S, Kurokawa T, Ogur J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403:136–138 es_ES
dc.description.references Setimela PS, Vivek B, Banziger M, Crossa J, Maideni F (2007) Evaluation of early to medium maturing open pollinated maize varieties in SADC region using GGE biplot based on the SREG model. Field Crop Res 103:161–169 es_ES
dc.description.references Shukla GK (1972) Some statistical aspects of partitioning genotype environment components of variability. Heredity 29:237–245 es_ES
dc.description.references Stommel JR, Whitaker BD (2003) Phenolic acid content and composition of eggplant fruit in a germplasm core subset. J Am Soc Hortic Sci 128:704–710 es_ES
dc.description.references Suzuki A, Yamamoto N, Jokura H, Yamamoto M, Fujii A, Tokimitsu I, Saito I (2006) Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J Hypertens 24:1065–1073 es_ES
dc.description.references University of Maryland (2007) Commercial vegetable production recommendations, University of Maryland Cooperative Extension Service Bulletin 236. College Park, MD es_ES
dc.description.references Whitaker BD, Stommel JR (2003) Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J Agric Food Chem 51:3448–3454 es_ES
dc.description.references Winter M, Herrmann K (1986) Esters and glucosides of hydroxycinnamic acids in vegetables. J Agric Food Chem 34:616–620 es_ES
dc.description.references Wu S, Meyer RS, Whitaker BD, Litt A, Kennelly EJ (2013) A New liquid chromatography-mass spectrometry-based strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species. J Chromatogr A 1314:154–172 es_ES
dc.description.references Yang JS, Liu CW, Ma YS, Weng SW, Tang NY, Wu SH, Ji BC, Ma CY, Ko YC, Funayama S, Kuo CL (2012) Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and mitochondria-dependent pathways. In Vivo 26:971–978 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem