- -

Assesment of a 4-input artificial neural network for ETo etimation through data set scanning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assesment of a 4-input artificial neural network for ETo etimation through data set scanning

Mostrar el registro completo del ítem

Martí Pérez, PC.; Manzano Juarez, J.; Royuela, A. (2011). Assesment of a 4-input artificial neural network for ETo etimation through data set scanning. Irrigation Science. 29(3):181-195. doi:10.1007/s00271-010-0224-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/78513

Ficheros en el ítem

Metadatos del ítem

Título: Assesment of a 4-input artificial neural network for ETo etimation through data set scanning
Autor: Martí Pérez, Pau Carles Manzano Juarez, Juan Royuela, Alvaro
Entidad UPV: Universitat Politècnica de València. Centro Valenciano de Estudios sobre el Riego - Centre Valencià d'Estudis sobre el Reg
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
Evapotranspiration is a complex and non-linear phenomenon that depends on the interaction of several climatic parameters. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly appropriate ...[+]
Palabras clave: ANN application , Artificial Neural Network , Artificial neural networks , Climatic parameters , Comparative analysis , Cross validation , Data sets , Leave one out , Non-linear phenomena , Nonlinear process , Reference evapotranspiration , Test sets , Traditional methodologies , Traditional techniques , Evapotranspiration , Water supply , Neural networks , Data set , Estimation method , Model test , Model validation , Numerical model , Performance assessment
Derechos de uso: Cerrado
Fuente:
Irrigation Science. (issn: 0342-7188 ) (eissn: 1432-1319 )
DOI: 10.1007/s00271-010-0224-6
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s00271-010-0224-6
Tipo: Artículo

References

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO irrigation and drainage, paper 56. FAO, Rome

Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brazil. Revista Brasileira de agrometeorologia 5(1):89–97 [+]
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO irrigation and drainage, paper 56. FAO, Rome

Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brazil. Revista Brasileira de agrometeorologia 5(1):89–97

Campolo M, Andreussi P, Sodalt A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191–1197

Chinh LV, Hiramatsu K, Harada M, Mori M (2009) Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models. Agric Wat Manag 96(9):1332–1338

Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361

Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multilayer perceptions. Adv Water Resour 27(2):185–195

French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1–4):1–31

Hagan MT, Menhaj MB (1994) Training multilayer Networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, MA, Boston

Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey

Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233(1–4):138–153

Jain A, Srinivasulu S (2006) Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J Hydrol 317(1–4):291–306

Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manage 125(5):263–271

Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317

Kişi Ö (2004) River flow modelling using artificial neural networks. J Hydrol Eng 9(1):60–63

Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260

Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105

Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934

Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–1460

Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430

Kişi Ö, Cimen Ö (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928

Kişi Ö, Öztürk Ö (2007) Adaptive Neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133(4):368–379

Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233

Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545

Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Wat Manag 95(5):553–565

Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334

Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Wat Manag 97(7):939–955

Martí P, Royuela A, Manzano J, Palau G (2008a) Applicability of a 4-input ANN model for ETo prediction in coastal and inland locations. In: Villacampa Esteve Y, Brebbia CA, Prats Rico D (eds) Sustainable irrigation. Management, technologies and policies II. Proceedings, 11–13 June 2008 at Alicante. WIT Press, Spain, pp 167–176

Martí P, Royuela A, Manzano J, Palau G (2008b) Improvement of temperature based ANN models for ETo prediction in coastal locations by means of preliminary models and exogenous data. Eighth international conference on hybrid intelligent systems 2008 proceedings, pp 344–349. IEEE Xplore

Martí P, Gasque M, Royuela A (2010a) Discussion of ‘Forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):435–438

Martí P, Provenzano G, Royuela A, Palau G (2010b) Integrated emitter local loss prediction using artificial neural networks. J Irrig Drain Eng 136(1):11–22

Martí P, Royuela A, Manzano J, Palau G (2010c) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174

Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick, Mass

Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417

Odhiambo LO, Yoder RE, Yoder DC, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6):1625–1633

Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Eng 102(2):202–218

Pulido-Calvo I, Portela MM (2007) Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J Hydrol 332(1–2):1–15

Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003) Demand forecasting for irrigation water distribution system. J Irrig Drain Eng 129(6):422–431

Pulido-Calvo I, Montesinos P, Roldán J, Ruiz-Navarro F (2007) Linear regression and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Eng 97(2):283–293

Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259

Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39

Sarangi A, Singh M, Bhattacharya AK, Singh AK (2006) Subsurface drainage performance study using SALTMOD and ANN models. Agric Wat Manag 84(3):240–248

Sharma V, Negi SC, Rudra RP, Yang S (2003) Neural networks for predicting nitrate-nitrogen in drainage water. Agric Wat Manag 63(3):169–183

Shayya WH, Sablani SS (1998) An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Comp Electron Agric 21(3):219–228

Shukla MB, Kok R, Prasher SO, Clark G, Lacroix R (1996) Use of artificial neural network in transient drainage design. Trans ASAE 39(1):119–124

Silva AF (2002) Previsão da evapotranspiração de referencia utilizando redes neurais. Dissertação de Mestrado, Univ. Federal de Viçosa. Viçosa, Minas Gerais, Brazil

Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218

Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. J Hydrol Eng 3(1):26–32

Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323

Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449

Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457

Willmott CJ (1981) On the validation model. Phys Geogr 2(2):184–194

Yang CC, Prasher SO, Lacroix R (1996) Application of artificial neural network to land drainage engineering. Trans ASAE 39(2):525–533

Yang CC, Lacroix R, Prasher SO (1998) The use of backpropagation neural networks for the simulation and analysis of time series data in subsurface systems. Trans ASAE 41(4):1181–1187

Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem