Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO irrigation and drainage, paper 56. FAO, Rome
Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford
Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brazil. Revista Brasileira de agrometeorologia 5(1):89–97
[+]
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO irrigation and drainage, paper 56. FAO, Rome
Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford
Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brazil. Revista Brasileira de agrometeorologia 5(1):89–97
Campolo M, Andreussi P, Sodalt A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191–1197
Chinh LV, Hiramatsu K, Harada M, Mori M (2009) Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models. Agric Wat Manag 96(9):1332–1338
Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361
Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multilayer perceptions. Adv Water Resour 27(2):185–195
French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1–4):1–31
Hagan MT, Menhaj MB (1994) Training multilayer Networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993
Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, MA, Boston
Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey
Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233(1–4):138–153
Jain A, Srinivasulu S (2006) Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J Hydrol 317(1–4):291–306
Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manage 125(5):263–271
Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317
Kişi Ö (2004) River flow modelling using artificial neural networks. J Hydrol Eng 9(1):60–63
Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260
Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105
Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934
Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–1460
Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430
Kişi Ö, Cimen Ö (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928
Kişi Ö, Öztürk Ö (2007) Adaptive Neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133(4):368–379
Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233
Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545
Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Wat Manag 95(5):553–565
Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334
Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Wat Manag 97(7):939–955
Martí P, Royuela A, Manzano J, Palau G (2008a) Applicability of a 4-input ANN model for ETo prediction in coastal and inland locations. In: Villacampa Esteve Y, Brebbia CA, Prats Rico D (eds) Sustainable irrigation. Management, technologies and policies II. Proceedings, 11–13 June 2008 at Alicante. WIT Press, Spain, pp 167–176
Martí P, Royuela A, Manzano J, Palau G (2008b) Improvement of temperature based ANN models for ETo prediction in coastal locations by means of preliminary models and exogenous data. Eighth international conference on hybrid intelligent systems 2008 proceedings, pp 344–349. IEEE Xplore
Martí P, Gasque M, Royuela A (2010a) Discussion of ‘Forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):435–438
Martí P, Provenzano G, Royuela A, Palau G (2010b) Integrated emitter local loss prediction using artificial neural networks. J Irrig Drain Eng 136(1):11–22
Martí P, Royuela A, Manzano J, Palau G (2010c) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174
Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick, Mass
Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417
Odhiambo LO, Yoder RE, Yoder DC, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6):1625–1633
Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Eng 102(2):202–218
Pulido-Calvo I, Portela MM (2007) Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J Hydrol 332(1–2):1–15
Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003) Demand forecasting for irrigation water distribution system. J Irrig Drain Eng 129(6):422–431
Pulido-Calvo I, Montesinos P, Roldán J, Ruiz-Navarro F (2007) Linear regression and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Eng 97(2):283–293
Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259
Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39
Sarangi A, Singh M, Bhattacharya AK, Singh AK (2006) Subsurface drainage performance study using SALTMOD and ANN models. Agric Wat Manag 84(3):240–248
Sharma V, Negi SC, Rudra RP, Yang S (2003) Neural networks for predicting nitrate-nitrogen in drainage water. Agric Wat Manag 63(3):169–183
Shayya WH, Sablani SS (1998) An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Comp Electron Agric 21(3):219–228
Shukla MB, Kok R, Prasher SO, Clark G, Lacroix R (1996) Use of artificial neural network in transient drainage design. Trans ASAE 39(1):119–124
Silva AF (2002) Previsão da evapotranspiração de referencia utilizando redes neurais. Dissertação de Mestrado, Univ. Federal de Viçosa. Viçosa, Minas Gerais, Brazil
Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218
Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. J Hydrol Eng 3(1):26–32
Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323
Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449
Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457
Willmott CJ (1981) On the validation model. Phys Geogr 2(2):184–194
Yang CC, Prasher SO, Lacroix R (1996) Application of artificial neural network to land drainage engineering. Trans ASAE 39(2):525–533
Yang CC, Lacroix R, Prasher SO (1998) The use of backpropagation neural networks for the simulation and analysis of time series data in subsurface systems. Trans ASAE 41(4):1181–1187
Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89
[-]