- -

Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast

Show full item record

Dolz Edo, L.; Rienzo, A.; Poveda Huertes, D.; Pascual-Ahuir Giner, MD.; Proft, MH. (2013). Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast. Molecular and Cellular Biology. 33(11):2228-2240. https://doi.org/10.1128/MCB.00240-13

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/78701

Files in this item

Item Metadata

Title: Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast
Author: Dolz Edo, Laura Rienzo, Alessandro Poveda Huertes, Daniel Pascual-Ahuir Giner, María Desamparados Proft, Markus Hans
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] Fine-tuned activation of gene expression in response to stress is the result of dynamic interactions of transcription factors with specific promoter binding sites. In the study described here we used a time-resolved ...[+]
Subjects: Activated protein-kinase , RNA POL-II , Saccharomyces cerevisiae , Gene expression , Nuclear localization , Transcription factor , MAP kinase , Environmental changes , Histone Deacetylase , Signaling pathways
Copyrigths: Reserva de todos los derechos
Source:
Molecular and Cellular Biology. (issn: 0270-7306 )
DOI: 10.1128/MCB.00240-13
Publisher:
American Society for Microbiology
Publisher version: http://dx.doi.org/10.1128/MCB.00240-13
Project ID:
info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/
Thanks:
This work was supported by the Ministerio de Economa y Competitividad (grant BFU2011-23326 to M.P.) and the Ministerio de Ciencia e Innovacion (predoctoral FPI grant to A.R.).
Type: Artículo

References

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241

Ni, L., Bruce, C., Hart, C., Leigh-Bell, J., Gelperin, D., Umansky, L., … Snyder, M. (2009). Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Development, 23(11), 1351-1363. doi:10.1101/gad.1781909

Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E., & Ariño, J. (2000). The Transcriptional Response of Yeast to Saline Stress. Journal of Biological Chemistry, 275(23), 17249-17255. doi:10.1074/jbc.m910016199 [+]
Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241

Ni, L., Bruce, C., Hart, C., Leigh-Bell, J., Gelperin, D., Umansky, L., … Snyder, M. (2009). Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Development, 23(11), 1351-1363. doi:10.1101/gad.1781909

Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E., & Ariño, J. (2000). The Transcriptional Response of Yeast to Saline Stress. Journal of Biological Chemistry, 275(23), 17249-17255. doi:10.1074/jbc.m910016199

Rep, M., Krantz, M., Thevelein, J. M., & Hohmann, S. (2000). The Transcriptional Response ofSaccharomyces cerevisiaeto Osmotic Shock. Journal of Biological Chemistry, 275(12), 8290-8300. doi:10.1074/jbc.275.12.8290

Yale, J., & Bohnert, H. J. (2001). Transcript Expression inSaccharomyces cerevisiaeat High Salinity. Journal of Biological Chemistry, 276(19), 15996-16007. doi:10.1074/jbc.m008209200

Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323

Martínez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO Journal, 15(9), 2227-2235. doi:10.1002/j.1460-2075.1996.tb00576.x

Schmitt, A. P., & McEntee, K. (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 93(12), 5777-5782. doi:10.1073/pnas.93.12.5777

Beck, T., & Hall, M. N. (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 402(6762), 689-692. doi:10.1038/45287

Gorner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F., Ammerer, G., Hamilton, B., … Schuller, C. (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes & Development, 12(4), 586-597. doi:10.1101/gad.12.4.586

Saito, H., & Posas, F. (2012). Response to Hyperosmotic Stress. Genetics, 192(2), 289-318. doi:10.1534/genetics.112.140863

De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055

Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046

Alepuz, P. M. (2003). Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. The EMBO Journal, 22(10), 2433-2442. doi:10.1093/emboj/cdg243

Nadal, E. d., Casadome, L., & Posas, F. (2003). Targeting the MEF2-Like Transcription Factor Smp1 by the Stress-Activated Hog1 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 23(1), 229-237. doi:10.1128/mcb.23.1.229-237.2003

Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123

Proft, M., & Serrano, R. (1999). Repressors and Upstream Repressing Sequences of the Stress-RegulatedENA1Gene inSaccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation. Molecular and Cellular Biology, 19(1), 537-546. doi:10.1128/mcb.19.1.537

Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G., & Ruis, H. (1999). Osmotic Stress-Induced Gene Expression inSaccharomyces cerevisiaeRequires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 19(8), 5474-5485. doi:10.1128/mcb.19.8.5474

Ruiz-Roig, C., Noriega, N., Duch, A., Posas, F., & de Nadal, E. (2012). The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Molecular Biology of the Cell, 23(21), 4286-4296. doi:10.1091/mbc.e12-04-0289

Vendrell, A., Martínez-Pastor, M., González-Novo, A., Pascual-Ahuir, A., Sinclair, D. A., Proft, M., & Posas, F. (2011). Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. EMBO reports, 12(10), 1062-1068. doi:10.1038/embor.2011.154

De Nadal, E., Zapater, M., Alepuz, P. M., Sumoy, L., Mas, G., & Posas, F. (2004). The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature, 427(6972), 370-374. doi:10.1038/nature02258

Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9

Zapater, M., Sohrmann, M., Peter, M., Posas, F., & de Nadal, E. (2007). Selective Requirement for SAGA in Hog1-Mediated Gene Expression Depending on the Severity of the External Osmostress Conditions. Molecular and Cellular Biology, 27(11), 3900-3910. doi:10.1128/mcb.00089-07

Capaldi, A. P., Kaplan, T., Liu, Y., Habib, N., Regev, A., Friedman, N., & O’Shea, E. K. (2008). Structure and function of a transcriptional network activated by the MAPK Hog1. Nature Genetics, 40(11), 1300-1306. doi:10.1038/ng.235

Cook, K. E., & O’Shea, E. K. (2012). Hog1 Controls Global Reallocation of RNA Pol II upon Osmotic Shock in Saccharomyces cerevisiae. G3: Genes|Genomes|Genetics, 2(9), 1129-1136. doi:10.1534/g3.112.003251

Proft, M., Gibbons, F. D., Copeland, M., Roth, F. P., & Struhl, K. (2005). Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress inSaccharomyces cerevisiae. Eukaryotic Cell, 4(8), 1343-1352. doi:10.1128/ec.4.8.1343-1352.2005

Vincent, A. C., & Struhl, K. (1992). ACR1, a yeast ATF/CREB repressor. Molecular and Cellular Biology, 12(12), 5394-5405. doi:10.1128/mcb.12.12.5394

Wong, K. H., & Struhl, K. (2011). The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes & Development, 25(23), 2525-2539. doi:10.1101/gad.179275.111

Ikner, A., & Shiozaki, K. (2005). Yeast signaling pathways in the oxidative stress response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 569(1-2), 13-27. doi:10.1016/j.mrfmmm.2004.09.006

Temple, M. D., Perrone, G. G., & Dawes, I. W. (2005). Complex cellular responses to reactive oxygen species. Trends in Cell Biology, 15(6), 319-326. doi:10.1016/j.tcb.2005.04.003

Toone, W. M., & Jones, N. (1999). AP-1 transcription factors in yeast. Current Opinion in Genetics & Development, 9(1), 55-61. doi:10.1016/s0959-437x(99)80008-2

Brombacher, K., Fischer, B. B., Rüfenacht, K., & Eggen, R. I. L. (2006). The role of Yap1p and Skn7p-mediated oxidative stress response in the defence ofSaccharomyces cerevisiae against singlet oxygen. Yeast, 23(10), 741-750. doi:10.1002/yea.1392

Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., & Toledano, M. B. (1999). Yap1 and Skn7 Control Two Specialized Oxidative Stress Response Regulons in Yeast. Journal of Biological Chemistry, 274(23), 16040-16046. doi:10.1074/jbc.274.23.16040

Fernandes, L., Rodrigues-Pousada, C., & Struhl, K. (1997). Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Molecular and Cellular Biology, 17(12), 6982-6993. doi:10.1128/mcb.17.12.6982

Gulshan, K., Rovinsky, S. A., Coleman, S. T., & Moye-Rowley, W. S. (2005). Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization. Journal of Biological Chemistry, 280(49), 40524-40533. doi:10.1074/jbc.m504716200

Kuge, S. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. The EMBO Journal, 16(7), 1710-1720. doi:10.1093/emboj/16.7.1710

Delaunay, A., Isnard, A.-D., & Toledano, M. B. (2000). H2O2 sensing through oxidation of the Yap1 transcription factor. The EMBO Journal, 19(19), 5157-5166. doi:10.1093/emboj/19.19.5157

Kuge, S., Arita, M., Murayama, A., Maeta, K., Izawa, S., Inoue, Y., & Nomoto, A. (2001). Regulation of the Yeast Yap1p Nuclear Export Signal Is Mediated by Redox Signal-Induced Reversible Disulfide Bond Formation. Molecular and Cellular Biology, 21(18), 6139-6150. doi:10.1128/mcb.21.18.6139-6150.2001

Koziol, S., Zagulski, M., Bilinski, T., & Bartosz, G. (2005). Antioxidants protect the yeastSaccharomyces cerevisiaeagainst hypertonic stress. Free Radical Research, 39(4), 365-371. doi:10.1080/10715760500045855

Bilsland, E., Molin, C., Swaminathan, S., Ramne, A., & Sunnerhagen, P. (2004). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Molecular Microbiology, 53(6), 1743-1756. doi:10.1111/j.1365-2958.2004.04238.x

Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905

Baker Brachmann, C., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., & Boeke, J. D. (1998). Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14(2), 115-132. doi:10.1002/(sici)1097-0061(19980130)14:2<115::aid-yea204>3.0.co;2-2

Winzeler, E. A. (1999). Functional Characterization of the S.&nbsp;cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901

Galiazzo, F., & Labbe-Bois, R. (1993). Regulation of Cu,Zn- and Mn-superoxide dismutase transcription in Saccharomyces cerevisiae. FEBS Letters, 315(2), 197-200. doi:10.1016/0014-5793(93)81162-s

Garay-Arroyo, A., & Covarrubias, A. A. (1999). Three genes whose expression is induced by stress inSaccharomyces cerevisiae. Yeast, 15(10A), 879-892. doi:10.1002/(sici)1097-0061(199907)15:10a<879::aid-yea428>3.0.co;2-q

Kwon, M. (2003). Oxidative stresses elevate the expression of cytochrome c peroxidase in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - General Subjects, 1623(1), 1-5. doi:10.1016/s0304-4165(03)00151-x

Pascual-Ahuir, A., Posas, F., Serrano, R., & Proft, M. (2001). Multiple Levels of Control Regulate the Yeast cAMP-response Element-binding Protein Repressor Sko1p in Response to Stress. Journal of Biological Chemistry, 276(40), 37373-37378. doi:10.1074/jbc.m105755200

Schüller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., & Ruis, H. (1994). The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. The EMBO Journal, 13(18), 4382-4389. doi:10.1002/j.1460-2075.1994.tb06758.x

Aguilera, J., & Prieto, J. (2001). The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Current Genetics, 39(5-6), 273-283. doi:10.1007/s002940100213

Aguilera, J., Rodríguez-Vargas, S., & Prieto, J. A. (2005). The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular Microbiology, 56(1), 228-239. doi:10.1111/j.1365-2958.2005.04533.x

Azevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C., & Toledano, M. B. (2003). Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radical Biology and Medicine, 35(8), 889-900. doi:10.1016/s0891-5849(03)00434-9

Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016

Rep, M., Albertyn, J., Thevelein, J. M., Prior, B. A., & Hohmann, S. (1999). Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology, 145(3), 715-727. doi:10.1099/13500872-145-3-715

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record