Mostrar el registro sencillo del ítem
dc.contributor.author | Dolz Edo, Laura | es_ES |
dc.contributor.author | Rienzo, Alessandro | es_ES |
dc.contributor.author | Poveda Huertes, Daniel | es_ES |
dc.contributor.author | Pascual-Ahuir Giner, María Desamparados | es_ES |
dc.contributor.author | Proft, Markus Hans | es_ES |
dc.date.accessioned | 2017-03-13T10:48:27Z | |
dc.date.available | 2017-03-13T10:48:27Z | |
dc.date.issued | 2013-06 | |
dc.identifier.issn | 0270-7306 | |
dc.identifier.uri | http://hdl.handle.net/10251/78701 | |
dc.description.abstract | [EN] Fine-tuned activation of gene expression in response to stress is the result of dynamic interactions of transcription factors with specific promoter binding sites. In the study described here we used a time-resolved luciferase reporter assay in living Saccharomyces cerevisiae yeast cells to gain insights into how osmotic and oxidative stress signals modulate gene expression in a dose-sensitive manner. Specifically, the dose-response behavior of four different natural promoters (GRE2, CTT1, SOD2, and CCP1) reveals differences in their sensitivity and dynamics in response to different salt and oxidative stimuli. Characteristic dose-response profiles were also obtained for artificial promoters driven by only one type of stress-regulated consensus element, such as the cyclic AMP-responsive element, stress response element, or AP-1 site. Oxidative and osmotic stress signals activate these elements separately and with different sensitivities through different signaling molecules. Combination of stress-activated cis elements does not, in general, enhance the absolute expression levels; however, specific combinations can increase the inducibility of the promoter in response to different stress doses. Finally, we show that the stress tolerance of the cell critically modulates the dynamics of its transcriptional response in the case of oxidative stress. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Economa y Competitividad (grant BFU2011-23326 to M.P.) and the Ministerio de Ciencia e Innovacion (predoctoral FPI grant to A.R.). | |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Microbiology | es_ES |
dc.relation.ispartof | Molecular and Cellular Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Activated protein-kinase | es_ES |
dc.subject | RNA POL-II | es_ES |
dc.subject | Saccharomyces cerevisiae | es_ES |
dc.subject | Gene expression | es_ES |
dc.subject | Nuclear localization | es_ES |
dc.subject | Transcription factor | es_ES |
dc.subject | MAP kinase | es_ES |
dc.subject | Environmental changes | es_ES |
dc.subject | Histone Deacetylase | es_ES |
dc.subject | Signaling pathways | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1128/MCB.00240-13 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Dolz Edo, L.; Rienzo, A.; Poveda Huertes, D.; Pascual-Ahuir Giner, MD.; Proft, MH. (2013). Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast. Molecular and Cellular Biology. 33(11):2228-2240. https://doi.org/10.1128/MCB.00240-13 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1128/MCB.00240-13 | es_ES |
dc.description.upvformatpinicio | 2228 | es_ES |
dc.description.upvformatpfin | 2240 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 259431 | es_ES |
dc.identifier.pmid | 23530054 | |
dc.identifier.pmcid | PMC3648068 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241 | es_ES |
dc.description.references | Ni, L., Bruce, C., Hart, C., Leigh-Bell, J., Gelperin, D., Umansky, L., … Snyder, M. (2009). Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Development, 23(11), 1351-1363. doi:10.1101/gad.1781909 | es_ES |
dc.description.references | Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E., & Ariño, J. (2000). The Transcriptional Response of Yeast to Saline Stress. Journal of Biological Chemistry, 275(23), 17249-17255. doi:10.1074/jbc.m910016199 | es_ES |
dc.description.references | Rep, M., Krantz, M., Thevelein, J. M., & Hohmann, S. (2000). The Transcriptional Response ofSaccharomyces cerevisiaeto Osmotic Shock. Journal of Biological Chemistry, 275(12), 8290-8300. doi:10.1074/jbc.275.12.8290 | es_ES |
dc.description.references | Yale, J., & Bohnert, H. J. (2001). Transcript Expression inSaccharomyces cerevisiaeat High Salinity. Journal of Biological Chemistry, 276(19), 15996-16007. doi:10.1074/jbc.m008209200 | es_ES |
dc.description.references | Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323 | es_ES |
dc.description.references | Martínez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO Journal, 15(9), 2227-2235. doi:10.1002/j.1460-2075.1996.tb00576.x | es_ES |
dc.description.references | Schmitt, A. P., & McEntee, K. (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 93(12), 5777-5782. doi:10.1073/pnas.93.12.5777 | es_ES |
dc.description.references | Beck, T., & Hall, M. N. (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 402(6762), 689-692. doi:10.1038/45287 | es_ES |
dc.description.references | Gorner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F., Ammerer, G., Hamilton, B., … Schuller, C. (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes & Development, 12(4), 586-597. doi:10.1101/gad.12.4.586 | es_ES |
dc.description.references | Saito, H., & Posas, F. (2012). Response to Hyperosmotic Stress. Genetics, 192(2), 289-318. doi:10.1534/genetics.112.140863 | es_ES |
dc.description.references | De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055 | es_ES |
dc.description.references | Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046 | es_ES |
dc.description.references | Alepuz, P. M. (2003). Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. The EMBO Journal, 22(10), 2433-2442. doi:10.1093/emboj/cdg243 | es_ES |
dc.description.references | Nadal, E. d., Casadome, L., & Posas, F. (2003). Targeting the MEF2-Like Transcription Factor Smp1 by the Stress-Activated Hog1 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 23(1), 229-237. doi:10.1128/mcb.23.1.229-237.2003 | es_ES |
dc.description.references | Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123 | es_ES |
dc.description.references | Proft, M., & Serrano, R. (1999). Repressors and Upstream Repressing Sequences of the Stress-RegulatedENA1Gene inSaccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation. Molecular and Cellular Biology, 19(1), 537-546. doi:10.1128/mcb.19.1.537 | es_ES |
dc.description.references | Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G., & Ruis, H. (1999). Osmotic Stress-Induced Gene Expression inSaccharomyces cerevisiaeRequires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 19(8), 5474-5485. doi:10.1128/mcb.19.8.5474 | es_ES |
dc.description.references | Ruiz-Roig, C., Noriega, N., Duch, A., Posas, F., & de Nadal, E. (2012). The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Molecular Biology of the Cell, 23(21), 4286-4296. doi:10.1091/mbc.e12-04-0289 | es_ES |
dc.description.references | Vendrell, A., Martínez-Pastor, M., González-Novo, A., Pascual-Ahuir, A., Sinclair, D. A., Proft, M., & Posas, F. (2011). Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. EMBO reports, 12(10), 1062-1068. doi:10.1038/embor.2011.154 | es_ES |
dc.description.references | De Nadal, E., Zapater, M., Alepuz, P. M., Sumoy, L., Mas, G., & Posas, F. (2004). The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature, 427(6972), 370-374. doi:10.1038/nature02258 | es_ES |
dc.description.references | Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9 | es_ES |
dc.description.references | Zapater, M., Sohrmann, M., Peter, M., Posas, F., & de Nadal, E. (2007). Selective Requirement for SAGA in Hog1-Mediated Gene Expression Depending on the Severity of the External Osmostress Conditions. Molecular and Cellular Biology, 27(11), 3900-3910. doi:10.1128/mcb.00089-07 | es_ES |
dc.description.references | Capaldi, A. P., Kaplan, T., Liu, Y., Habib, N., Regev, A., Friedman, N., & O’Shea, E. K. (2008). Structure and function of a transcriptional network activated by the MAPK Hog1. Nature Genetics, 40(11), 1300-1306. doi:10.1038/ng.235 | es_ES |
dc.description.references | Cook, K. E., & O’Shea, E. K. (2012). Hog1 Controls Global Reallocation of RNA Pol II upon Osmotic Shock in Saccharomyces cerevisiae. G3: Genes|Genomes|Genetics, 2(9), 1129-1136. doi:10.1534/g3.112.003251 | es_ES |
dc.description.references | Proft, M., Gibbons, F. D., Copeland, M., Roth, F. P., & Struhl, K. (2005). Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress inSaccharomyces cerevisiae. Eukaryotic Cell, 4(8), 1343-1352. doi:10.1128/ec.4.8.1343-1352.2005 | es_ES |
dc.description.references | Vincent, A. C., & Struhl, K. (1992). ACR1, a yeast ATF/CREB repressor. Molecular and Cellular Biology, 12(12), 5394-5405. doi:10.1128/mcb.12.12.5394 | es_ES |
dc.description.references | Wong, K. H., & Struhl, K. (2011). The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes & Development, 25(23), 2525-2539. doi:10.1101/gad.179275.111 | es_ES |
dc.description.references | Ikner, A., & Shiozaki, K. (2005). Yeast signaling pathways in the oxidative stress response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 569(1-2), 13-27. doi:10.1016/j.mrfmmm.2004.09.006 | es_ES |
dc.description.references | Temple, M. D., Perrone, G. G., & Dawes, I. W. (2005). Complex cellular responses to reactive oxygen species. Trends in Cell Biology, 15(6), 319-326. doi:10.1016/j.tcb.2005.04.003 | es_ES |
dc.description.references | Toone, W. M., & Jones, N. (1999). AP-1 transcription factors in yeast. Current Opinion in Genetics & Development, 9(1), 55-61. doi:10.1016/s0959-437x(99)80008-2 | es_ES |
dc.description.references | Brombacher, K., Fischer, B. B., Rüfenacht, K., & Eggen, R. I. L. (2006). The role of Yap1p and Skn7p-mediated oxidative stress response in the defence ofSaccharomyces cerevisiae against singlet oxygen. Yeast, 23(10), 741-750. doi:10.1002/yea.1392 | es_ES |
dc.description.references | Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., & Toledano, M. B. (1999). Yap1 and Skn7 Control Two Specialized Oxidative Stress Response Regulons in Yeast. Journal of Biological Chemistry, 274(23), 16040-16046. doi:10.1074/jbc.274.23.16040 | es_ES |
dc.description.references | Fernandes, L., Rodrigues-Pousada, C., & Struhl, K. (1997). Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Molecular and Cellular Biology, 17(12), 6982-6993. doi:10.1128/mcb.17.12.6982 | es_ES |
dc.description.references | Gulshan, K., Rovinsky, S. A., Coleman, S. T., & Moye-Rowley, W. S. (2005). Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization. Journal of Biological Chemistry, 280(49), 40524-40533. doi:10.1074/jbc.m504716200 | es_ES |
dc.description.references | Kuge, S. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. The EMBO Journal, 16(7), 1710-1720. doi:10.1093/emboj/16.7.1710 | es_ES |
dc.description.references | Delaunay, A., Isnard, A.-D., & Toledano, M. B. (2000). H2O2 sensing through oxidation of the Yap1 transcription factor. The EMBO Journal, 19(19), 5157-5166. doi:10.1093/emboj/19.19.5157 | es_ES |
dc.description.references | Kuge, S., Arita, M., Murayama, A., Maeta, K., Izawa, S., Inoue, Y., & Nomoto, A. (2001). Regulation of the Yeast Yap1p Nuclear Export Signal Is Mediated by Redox Signal-Induced Reversible Disulfide Bond Formation. Molecular and Cellular Biology, 21(18), 6139-6150. doi:10.1128/mcb.21.18.6139-6150.2001 | es_ES |
dc.description.references | Koziol, S., Zagulski, M., Bilinski, T., & Bartosz, G. (2005). Antioxidants protect the yeastSaccharomyces cerevisiaeagainst hypertonic stress. Free Radical Research, 39(4), 365-371. doi:10.1080/10715760500045855 | es_ES |
dc.description.references | Bilsland, E., Molin, C., Swaminathan, S., Ramne, A., & Sunnerhagen, P. (2004). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Molecular Microbiology, 53(6), 1743-1756. doi:10.1111/j.1365-2958.2004.04238.x | es_ES |
dc.description.references | Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905 | es_ES |
dc.description.references | Baker Brachmann, C., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., & Boeke, J. D. (1998). Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14(2), 115-132. doi:10.1002/(sici)1097-0061(19980130)14:2<115::aid-yea204>3.0.co;2-2 | es_ES |
dc.description.references | Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901 | es_ES |
dc.description.references | Galiazzo, F., & Labbe-Bois, R. (1993). Regulation of Cu,Zn- and Mn-superoxide dismutase transcription in Saccharomyces cerevisiae. FEBS Letters, 315(2), 197-200. doi:10.1016/0014-5793(93)81162-s | es_ES |
dc.description.references | Garay-Arroyo, A., & Covarrubias, A. A. (1999). Three genes whose expression is induced by stress inSaccharomyces cerevisiae. Yeast, 15(10A), 879-892. doi:10.1002/(sici)1097-0061(199907)15:10a<879::aid-yea428>3.0.co;2-q | es_ES |
dc.description.references | Kwon, M. (2003). Oxidative stresses elevate the expression of cytochrome c peroxidase in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - General Subjects, 1623(1), 1-5. doi:10.1016/s0304-4165(03)00151-x | es_ES |
dc.description.references | Pascual-Ahuir, A., Posas, F., Serrano, R., & Proft, M. (2001). Multiple Levels of Control Regulate the Yeast cAMP-response Element-binding Protein Repressor Sko1p in Response to Stress. Journal of Biological Chemistry, 276(40), 37373-37378. doi:10.1074/jbc.m105755200 | es_ES |
dc.description.references | Schüller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., & Ruis, H. (1994). The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. The EMBO Journal, 13(18), 4382-4389. doi:10.1002/j.1460-2075.1994.tb06758.x | es_ES |
dc.description.references | Aguilera, J., & Prieto, J. (2001). The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Current Genetics, 39(5-6), 273-283. doi:10.1007/s002940100213 | es_ES |
dc.description.references | Aguilera, J., Rodríguez-Vargas, S., & Prieto, J. A. (2005). The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular Microbiology, 56(1), 228-239. doi:10.1111/j.1365-2958.2005.04533.x | es_ES |
dc.description.references | Azevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C., & Toledano, M. B. (2003). Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radical Biology and Medicine, 35(8), 889-900. doi:10.1016/s0891-5849(03)00434-9 | es_ES |
dc.description.references | Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016 | es_ES |
dc.description.references | Rep, M., Albertyn, J., Thevelein, J. M., Prior, B. A., & Hohmann, S. (1999). Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology, 145(3), 715-727. doi:10.1099/13500872-145-3-715 | es_ES |