- -

Heuristics for periodical batch job scheduling in a MapReduce computing framework

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heuristics for periodical batch job scheduling in a MapReduce computing framework

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xiaoping Li es_ES
dc.contributor.author Tianze Jiang es_ES
dc.contributor.author Ruiz García, Rubén es_ES
dc.date.accessioned 2017-03-20T17:47:39Z
dc.date.available 2017-03-20T17:47:39Z
dc.date.issued 2016-01-01
dc.identifier.issn 0020-0255
dc.identifier.uri http://hdl.handle.net/10251/78868
dc.description.abstract Task scheduling has a significant impact on the performance of the MapReduce computing framework. In this paper, a scheduling problem of periodical batch jobs with makespan minimization is considered. The problem is modeled as a general two-stage hybrid flow shop scheduling problem with schedule-dependent setup times. The new model incorporates the data locality of tasks and is formulated as an integer program. Three heuristics are developed to solve the problem and an improvement policy based on data locality is presented to enhance the methods. A lower bound of the makespan is derived. 150 instances are randomly generated from data distributions drawn from a real cluster. The parameters involved in the methods are set according to different cluster setups. The proposed heuristics are compared over different numbers of jobs and cluster setups. Computational results show that the performance of the methods is highly dependent on both the number of jobs and the cluster setups. The proposed improvement policy is effective and the impact of the input data distribution on the policy is analyzed and tested. es_ES
dc.description.sponsorship This work is supported by the National Natural Science Foundation of China (No. 61272377) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120092110027). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "RESULT - Realistic Extended Scheduling Using Light Techniques" (No. DPI2012-36243-C02-01) partially financed with FEDER funds. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MapReduce es_ES
dc.subject Periodical job es_ES
dc.subject Schedule-dependent setup times es_ES
dc.subject Heuristics es_ES
dc.subject Makespan es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Heuristics for periodical batch job scheduling in a MapReduce computing framework es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ins.2015.07.040
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61272377/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SRFDP//20120092110027/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2012-36243-C02-01/ES/REALISTIC EXTENDED SCHEDULING USING LIGHT TECHNIQUES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Xiaoping Li; Tianze Jiang; Ruiz García, R. (2016). Heuristics for periodical batch job scheduling in a MapReduce computing framework. Information Sciences. 326:119-133. https://doi.org/10.1016/j.ins.2015.07.040 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.ins.2015.07.040 es_ES
dc.description.upvformatpinicio 119 es_ES
dc.description.upvformatpfin 133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 326 es_ES
dc.relation.senia 327928 es_ES
dc.contributor.funder Specialized Research Fund for the Doctoral Program of Higher Education of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem