Mostrar el registro sencillo del ítem
dc.contributor.author | Xiaoping Li | es_ES |
dc.contributor.author | Tianze Jiang | es_ES |
dc.contributor.author | Ruiz García, Rubén | es_ES |
dc.date.accessioned | 2017-03-20T17:47:39Z | |
dc.date.available | 2017-03-20T17:47:39Z | |
dc.date.issued | 2016-01-01 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.uri | http://hdl.handle.net/10251/78868 | |
dc.description.abstract | Task scheduling has a significant impact on the performance of the MapReduce computing framework. In this paper, a scheduling problem of periodical batch jobs with makespan minimization is considered. The problem is modeled as a general two-stage hybrid flow shop scheduling problem with schedule-dependent setup times. The new model incorporates the data locality of tasks and is formulated as an integer program. Three heuristics are developed to solve the problem and an improvement policy based on data locality is presented to enhance the methods. A lower bound of the makespan is derived. 150 instances are randomly generated from data distributions drawn from a real cluster. The parameters involved in the methods are set according to different cluster setups. The proposed heuristics are compared over different numbers of jobs and cluster setups. Computational results show that the performance of the methods is highly dependent on both the number of jobs and the cluster setups. The proposed improvement policy is effective and the impact of the input data distribution on the policy is analyzed and tested. | es_ES |
dc.description.sponsorship | This work is supported by the National Natural Science Foundation of China (No. 61272377) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120092110027). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "RESULT - Realistic Extended Scheduling Using Light Techniques" (No. DPI2012-36243-C02-01) partially financed with FEDER funds. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Information Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MapReduce | es_ES |
dc.subject | Periodical job | es_ES |
dc.subject | Schedule-dependent setup times | es_ES |
dc.subject | Heuristics | es_ES |
dc.subject | Makespan | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Heuristics for periodical batch job scheduling in a MapReduce computing framework | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ins.2015.07.040 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//61272377/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SRFDP//20120092110027/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2012-36243-C02-01/ES/REALISTIC EXTENDED SCHEDULING USING LIGHT TECHNIQUES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Xiaoping Li; Tianze Jiang; Ruiz García, R. (2016). Heuristics for periodical batch job scheduling in a MapReduce computing framework. Information Sciences. 326:119-133. https://doi.org/10.1016/j.ins.2015.07.040 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.ins.2015.07.040 | es_ES |
dc.description.upvformatpinicio | 119 | es_ES |
dc.description.upvformatpfin | 133 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 326 | es_ES |
dc.relation.senia | 327928 | es_ES |
dc.contributor.funder | Specialized Research Fund for the Doctoral Program of Higher Education of China | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |