- -

On the origin of pure optical rotation in twisted-cross metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the origin of pure optical rotation in twisted-cross metamaterials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barr, Lauren E. es_ES
dc.contributor.author Díaz Rubio, Ana es_ES
dc.contributor.author Tremain, Ben es_ES
dc.contributor.author Carbonell Olivares, Jorge es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.contributor.author Hendry, Euan es_ES
dc.contributor.author Hibbins, Alastair P. es_ES
dc.date.accessioned 2017-03-30T12:31:22Z
dc.date.available 2017-03-30T12:31:22Z
dc.date.issued 2016-07-26
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/79286
dc.description.abstract We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. es_ES
dc.description.sponsorship The authors wish to thank Dr. Simon Horsley and Prof. Roy Sambles for their helpful discussions. A.D.-R., J.C. and J.S.-D. acknowledge the support by the Ministerio de Economica y Competitividad of the Spanish government, and the European Union FEDER through project TEC2014-53088-C3-1-R. L.E.B. and A.P.H. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials (Grant No. EP/L015331/1). E.H. wishes to acknowledge support from the EPSRC (Grant No. EP/K041215/1). en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title On the origin of pure optical rotation in twisted-cross metamaterials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep30307
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCUK/EPSRC/EP/K041215/1/GB/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FL015331%2F1/GB/EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FK041215%2F1/GB/Graphene nanophotonics: Smaller, stronger, faster/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Barr, LE.; Díaz Rubio, A.; Tremain, B.; Carbonell Olivares, J.; Sánchez-Dehesa Moreno-Cid, J.; Hendry, E.; Hibbins, AP. (2016). On the origin of pure optical rotation in twisted-cross metamaterials. Scientific Reports. 6:30307-30307. https://doi.org/10.1038/srep30307 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/srep30307 es_ES
dc.description.upvformatpinicio 30307 es_ES
dc.description.upvformatpfin 30307 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 327673 es_ES
dc.identifier.pmid 27457405 en_EN
dc.identifier.pmcid PMC4960567 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.description.references Li, Z. et al. Coupling effect between two adjacent chiral structure layers. Opt. Exp. 18, 5375–5383 (2010). es_ES
dc.description.references Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S. & Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006). es_ES
dc.description.references Barron, L. D. Molecular Light Scattering and Optical Activity 2nd Ed, Cambridge University Press (2004). es_ES
dc.description.references Li, Z. et al. Chiral metamaterials with negative refractive index based on four “U” split ring resonators. App. Phys. Lett. 97, 081901 (2010). es_ES
dc.description.references Monzon, C. & Forester, D. W. Negative refraction and focusing of circularly polarized waves in optically active media. Phys. Rev. Lett. 95, 123904 (2005). es_ES
dc.description.references Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004). es_ES
dc.description.references Gao, W. & Tam, W. Y. Optical activities in complementary double layers of six-armed metallic gammadion structures. J. Opt. 13, 015101 (2011). es_ES
dc.description.references Dong, J., Zhou, J., Koschny, T. & Soukoulis, C. Bi-layer cross chiral structure with strong optical activity and negative refractive index. Opt. Exp. 17, 14172–14179 (2009). es_ES
dc.description.references Zhou, J. et al. Negative refractive index due to chirality. Phys. Rev. B. 79, 121104 (2009). es_ES
dc.description.references Decker, M. et al. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501–2503 (2009). es_ES
dc.description.references Li, Z., Alici, K. B., Colak, E. & Ozbay, E. Complementary chiral metamaterials with giant optical activity and negative refractive index. App. Phys. Lett. 98, 161907 (2011). es_ES
dc.description.references Hannam, K., Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Dispersionless optical activity in metamaterials. App. Phys. Lett. 102, 201121 (2013). es_ES
dc.description.references Hannam, K., Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Broadband chiral metamaterials with large optical activity. Phys. Rev. B. 89, 125105 (2014). es_ES
dc.description.references Li, Y. & Hung, Y. Dispersion-free broadband optical polarisation based on helix photonic metamaterials. Opt. Exp. 23, 16772 (2015). es_ES
dc.description.references Zhu, W., Rukhlenko, I. D., Huang, Y., Wen, G. & Premaratne, M. Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration. J. Opt. 15, 125101 (2013). es_ES
dc.description.references ANSYS Electromagnetics Suite Release 15.0, ANSYS Inc., Pittsburgh, USA URL http://www.ansys.com . es_ES
dc.description.references Luk’yanchuk, B. et al. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mat. 9, 707–715 (2010). es_ES
dc.description.references Kenanakis, G., Economou, E. N., Soukoulis, C. M. & Kafesaki, M. Controlling THz and Far-IR Waves with Chiral and Bianisotropic Metamaterials. EPJ Appl. Meta. 2, 1–12 (2015). es_ES
dc.description.references Genet, C. & Ebbesen, T. W. Light in Tiny Holes. Nature 445, 39–46 (2007). es_ES
dc.description.references Grigorenko, A. N., Nitkin, P. I. & Kabashin, A. V. Phase jumps and interferometric surface plasmon resonance imaging. App. Phys. Lett. 75, 3917–3919 (1999). es_ES
dc.description.references Gorkunov, M. V. et al. Implications of the causality principle for ultra chiral metamaterials. Sci. Rep. 5, 1–5 (2015). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem