- -

On the origin of pure optical rotation in twisted-cross metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the origin of pure optical rotation in twisted-cross metamaterials

Mostrar el registro completo del ítem

Barr, LE.; Díaz Rubio, A.; Tremain, B.; Carbonell Olivares, J.; Sánchez-Dehesa Moreno-Cid, J.; Hendry, E.; Hibbins, AP. (2016). On the origin of pure optical rotation in twisted-cross metamaterials. Scientific Reports. 6:30307-30307. https://doi.org/10.1038/srep30307

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79286

Ficheros en el ítem

Metadatos del ítem

Título: On the origin of pure optical rotation in twisted-cross metamaterials
Autor: Barr, Lauren E. Díaz Rubio, Ana Tremain, Ben Carbonell Olivares, Jorge Sánchez-Dehesa Moreno-Cid, José Hendry, Euan Hibbins, Alastair P.
Entidad UPV: Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep30307
Editorial:
Nature Publishing Group
Versión del editor: http://dx.doi.org/10.1038/srep30307
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/
info:eu-repo/grantAgreement/RCUK/EPSRC/EP/K041215/1/GB/
info:eu-repo/grantAgreement/UKRI//EP%2FL015331%2F1/GB/EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials/
info:eu-repo/grantAgreement/UKRI//EP%2FK041215%2F1/GB/Graphene nanophotonics: Smaller, stronger, faster/
Agradecimientos:
The authors wish to thank Dr. Simon Horsley and Prof. Roy Sambles for their helpful discussions. A.D.-R., J.C. and J.S.-D. acknowledge the support by the Ministerio de Economica y Competitividad of the Spanish government, ...[+]
Tipo: Artículo

References

Li, Z. et al. Coupling effect between two adjacent chiral structure layers. Opt. Exp. 18, 5375–5383 (2010).

Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S. & Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006).

Barron, L. D. Molecular Light Scattering and Optical Activity 2nd Ed, Cambridge University Press (2004). [+]
Li, Z. et al. Coupling effect between two adjacent chiral structure layers. Opt. Exp. 18, 5375–5383 (2010).

Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S. & Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006).

Barron, L. D. Molecular Light Scattering and Optical Activity 2nd Ed, Cambridge University Press (2004).

Li, Z. et al. Chiral metamaterials with negative refractive index based on four “U” split ring resonators. App. Phys. Lett. 97, 081901 (2010).

Monzon, C. & Forester, D. W. Negative refraction and focusing of circularly polarized waves in optically active media. Phys. Rev. Lett. 95, 123904 (2005).

Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

Gao, W. & Tam, W. Y. Optical activities in complementary double layers of six-armed metallic gammadion structures. J. Opt. 13, 015101 (2011).

Dong, J., Zhou, J., Koschny, T. & Soukoulis, C. Bi-layer cross chiral structure with strong optical activity and negative refractive index. Opt. Exp. 17, 14172–14179 (2009).

Zhou, J. et al. Negative refractive index due to chirality. Phys. Rev. B. 79, 121104 (2009).

Decker, M. et al. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501–2503 (2009).

Li, Z., Alici, K. B., Colak, E. & Ozbay, E. Complementary chiral metamaterials with giant optical activity and negative refractive index. App. Phys. Lett. 98, 161907 (2011).

Hannam, K., Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Dispersionless optical activity in metamaterials. App. Phys. Lett. 102, 201121 (2013).

Hannam, K., Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Broadband chiral metamaterials with large optical activity. Phys. Rev. B. 89, 125105 (2014).

Li, Y. & Hung, Y. Dispersion-free broadband optical polarisation based on helix photonic metamaterials. Opt. Exp. 23, 16772 (2015).

Zhu, W., Rukhlenko, I. D., Huang, Y., Wen, G. & Premaratne, M. Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration. J. Opt. 15, 125101 (2013).

ANSYS Electromagnetics Suite Release 15.0, ANSYS Inc., Pittsburgh, USA URL http://www.ansys.com .

Luk’yanchuk, B. et al. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mat. 9, 707–715 (2010).

Kenanakis, G., Economou, E. N., Soukoulis, C. M. & Kafesaki, M. Controlling THz and Far-IR Waves with Chiral and Bianisotropic Metamaterials. EPJ Appl. Meta. 2, 1–12 (2015).

Genet, C. & Ebbesen, T. W. Light in Tiny Holes. Nature 445, 39–46 (2007).

Grigorenko, A. N., Nitkin, P. I. & Kabashin, A. V. Phase jumps and interferometric surface plasmon resonance imaging. App. Phys. Lett. 75, 3917–3919 (1999).

Gorkunov, M. V. et al. Implications of the causality principle for ultra chiral metamaterials. Sci. Rep. 5, 1–5 (2015).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem