Li, Z. et al. Coupling effect between two adjacent chiral structure layers. Opt. Exp. 18, 5375–5383 (2010).
Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S. & Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006).
Barron, L. D. Molecular Light Scattering and Optical Activity 2nd Ed, Cambridge University Press (2004).
[+]
Li, Z. et al. Coupling effect between two adjacent chiral structure layers. Opt. Exp. 18, 5375–5383 (2010).
Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S. & Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006).
Barron, L. D. Molecular Light Scattering and Optical Activity 2nd Ed, Cambridge University Press (2004).
Li, Z. et al. Chiral metamaterials with negative refractive index based on four “U” split ring resonators. App. Phys. Lett. 97, 081901 (2010).
Monzon, C. & Forester, D. W. Negative refraction and focusing of circularly polarized waves in optically active media. Phys. Rev. Lett. 95, 123904 (2005).
Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).
Gao, W. & Tam, W. Y. Optical activities in complementary double layers of six-armed metallic gammadion structures. J. Opt. 13, 015101 (2011).
Dong, J., Zhou, J., Koschny, T. & Soukoulis, C. Bi-layer cross chiral structure with strong optical activity and negative refractive index. Opt. Exp. 17, 14172–14179 (2009).
Zhou, J. et al. Negative refractive index due to chirality. Phys. Rev. B. 79, 121104 (2009).
Decker, M. et al. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501–2503 (2009).
Li, Z., Alici, K. B., Colak, E. & Ozbay, E. Complementary chiral metamaterials with giant optical activity and negative refractive index. App. Phys. Lett. 98, 161907 (2011).
Hannam, K., Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Dispersionless optical activity in metamaterials. App. Phys. Lett. 102, 201121 (2013).
Hannam, K., Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Broadband chiral metamaterials with large optical activity. Phys. Rev. B. 89, 125105 (2014).
Li, Y. & Hung, Y. Dispersion-free broadband optical polarisation based on helix photonic metamaterials. Opt. Exp. 23, 16772 (2015).
Zhu, W., Rukhlenko, I. D., Huang, Y., Wen, G. & Premaratne, M. Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration. J. Opt. 15, 125101 (2013).
ANSYS Electromagnetics Suite Release 15.0, ANSYS Inc., Pittsburgh, USA URL http://www.ansys.com .
Luk’yanchuk, B. et al. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mat. 9, 707–715 (2010).
Kenanakis, G., Economou, E. N., Soukoulis, C. M. & Kafesaki, M. Controlling THz and Far-IR Waves with Chiral and Bianisotropic Metamaterials. EPJ Appl. Meta. 2, 1–12 (2015).
Genet, C. & Ebbesen, T. W. Light in Tiny Holes. Nature 445, 39–46 (2007).
Grigorenko, A. N., Nitkin, P. I. & Kabashin, A. V. Phase jumps and interferometric surface plasmon resonance imaging. App. Phys. Lett. 75, 3917–3919 (1999).
Gorkunov, M. V. et al. Implications of the causality principle for ultra chiral metamaterials. Sci. Rep. 5, 1–5 (2015).
[-]