- -

Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress

Mostrar el registro completo del ítem

Leon Ramos, J.; Castillo López Del Toro, MC.; Coego González, A.; Lozano Juste, J.; Mir Moreno, R. (2014). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany. 65(4):907-921. https://doi.org/10.1093/jxb/ert454

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79360

Ficheros en el ítem

Metadatos del ítem

Título: Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress
Autor: Leon Ramos, Jose Castillo López del Toro, Mª Cruz Coego González, Alberto Lozano Juste, Jorge Mir Moreno, Ricardo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide ...[+]
Palabras clave: ABA , Abiotic stress , Defence , Leaf senescence , Nitric oxide , Seed germination , Stomatal closure
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/ert454
Editorial:
Oxford University Press (OUP)
Versión del editor: http://dx.doi.org/10.1093/jxb/ert454
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2011-27526/ES/EL OXIDO NITRICO COMO MODULADOR DE LA SEÑALIZACION MEDIADA POR ABA Y GIBERELINAS EN ARABIDOPSIS/
info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./
Agradecimientos:
This work was supported by MICINN (Spain) grants BIO2011-27526 and CONSOLIDER CSD2007-00057 to JL and postdoctoral contracts to MCC and AC. RM was funded by a pre-doctoral fellowship of the FPU Program from MEC (Spain). ...[+]
Tipo: Artículo

References

ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x

Asai, S., & Yoshioka, H. (2009). Nitric Oxide as a Partner of Reactive Oxygen Species Participates in Disease Resistance to Necrotrophic Pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22(6), 619-629. doi:10.1094/mpmi-22-6-0619

Asselbergh, B., De Vleesschauwer, D., & Höfte, M. (2008). Global Switches and Fine-Tuning—ABA Modulates Plant Pathogen Defense. Molecular Plant-Microbe Interactions, 21(6), 709-719. doi:10.1094/mpmi-21-6-0709 [+]
ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x

Asai, S., & Yoshioka, H. (2009). Nitric Oxide as a Partner of Reactive Oxygen Species Participates in Disease Resistance to Necrotrophic Pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22(6), 619-629. doi:10.1094/mpmi-22-6-0619

Asselbergh, B., De Vleesschauwer, D., & Höfte, M. (2008). Global Switches and Fine-Tuning—ABA Modulates Plant Pathogen Defense. Molecular Plant-Microbe Interactions, 21(6), 709-719. doi:10.1094/mpmi-21-6-0709

Batak, I., Dević, M., Gibal, Z., Grubišić, D., Poff, K. L., & Konjević, R. (2002). The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Science Research, 12(4), 253-259. doi:10.1079/ssr2002118

Beligni, M. V., & Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 210(2), 215-221. doi:10.1007/pl00008128

Bellin, D., Asai, S., Delledonne, M., & Yoshioka, H. (2013). Nitric Oxide as a Mediator for Defense Responses. Molecular Plant-Microbe Interactions, 26(3), 271-277. doi:10.1094/mpmi-09-12-0214-cr

Bethke, P. C., Libourel, I. G. L., Aoyama, N., Chung, Y.-Y., Still, D. W., & Jones, R. L. (2007). The Arabidopsis Aleurone Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and Necessary for Seed Dormancy. Plant Physiology, 143(3), 1173-1188. doi:10.1104/pp.106.093435

Bethke, P. C., Libourel, I. G. L., & Jones, R. L. (2005). Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany, 57(3), 517-526. doi:10.1093/jxb/erj060

Bethke, P. C., Libourel, I. G. L., Reinöhl, V., & Jones, R. L. (2005). Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta, 223(4), 805-812. doi:10.1007/s00425-005-0116-9

Bright, J., Desikan, R., Hancock, J. T., Weir, I. S., & Neill, S. J. (2005). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2 O2 synthesis. The Plant Journal, 45(1), 113-122. doi:10.1111/j.1365-313x.2005.02615.x

Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., … Leaver, C. J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42(4), 567-585. doi:10.1111/j.1365-313x.2005.02399.x

Cao, F. Y., Yoshioka, K., & Desveaux, D. (2011). The roles of ABA in plant–pathogen interactions. Journal of Plant Research, 124(4), 489-499. doi:10.1007/s10265-011-0409-y

Cerana, M., Bonza, M. C., Harris, R., Sanders, D., & Michelis, M. I. (2006). Abscisic Acid Stimulates the Expression of Two Isoforms of Plasma Membrane Ca2+-ATPase in Arabidopsis thaliana Seedlings. Plant Biology, 8(5), 572-578. doi:10.1055/s-2006-924111

Choi, D. S., & Hwang, B. K. (2011). Proteomics and Functional Analyses of Pepper Abscisic Acid–Responsive 1 (ABR1), Which Is Involved in Cell Death and Defense Signaling. The Plant Cell, 23(2), 823-842. doi:10.1105/tpc.110.082081

Chun, H. J., Park, H. C., Koo, S. C., Lee, J. H., Park, C. Y., Choi, M. S., … Kim, M. C. (2012). Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Molecules and Cells, 34(5), 463-471. doi:10.1007/s10059-012-0213-0

Corpas, F. J., Barroso, J. B., Carreras, A., Quirós, M., León, A. M., Romero-Puertas, M. C., … del Río, L. A. (2004). Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. Plant Physiology, 136(1), 2722-2733. doi:10.1104/pp.104.042812

Corpas, F. J., Barroso, J. B., Carreras, A., Valderrama, R., Palma, J. M., León, A. M., … del Río, L. A. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 224(2), 246-254. doi:10.1007/s00425-005-0205-9

Corpas, F. J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J. M., & Barroso, J. B. (2011). Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Science, 181(5), 604-611. doi:10.1016/j.plantsci.2011.04.005

Daszkowska-Golec, A., & Szarejko, I. (2013). Open or Close the Gate – Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00138

Davies, W. J., & Zhang, J. (1991). Root Signals and the Regulation of Growth and Development of Plants in Drying Soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 55-76. doi:10.1146/annurev.pp.42.060191.000415

De Michele, R., Formentin, E., Todesco, M., Toppo, S., Carimi, F., Zottini, M., … Lo Schiavo, F. (2008). Transcriptome analysis ofMedicago truncatulaleaf senescence: similarities and differences in metabolic and transcriptional regulations as compared withArabidopsis, nodule senescence and nitric oxide signalling. New Phytologist, 181(3), 563-575. doi:10.1111/j.1469-8137.2008.02684.x

De Torres Zabala, M., Bennett, M. H., Truman, W. H., & Grant, M. R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. The Plant Journal, 59(3), 375-386. doi:10.1111/j.1365-313x.2009.03875.x

De Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., … Grant, M. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. The EMBO Journal, 26(5), 1434-1443. doi:10.1038/sj.emboj.7601575

Delledonne, M., Xia, Y., Dixon, R. A., & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394(6693), 585-588. doi:10.1038/29087

Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences, 98(23), 13454-13459. doi:10.1073/pnas.231178298

Desikan, R., Griffiths, R., Hancock, J., & Neill, S. (2002). A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(25), 16314-16318. doi:10.1073/pnas.252461999

Dubovskaya, L. V., Bakakina, Y. S., Kolesneva, E. V., Sodel, D. L., McAinsh, M. R., Hetherington, A. M., & Volotovski, I. D. (2011). cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytologist, 191(1), 57-69. doi:10.1111/j.1469-8137.2011.03661.x

Durbak, A., Yao, H., & McSteen, P. (2012). Hormone signaling in plant development. Current Opinion in Plant Biology, 15(1), 92-96. doi:10.1016/j.pbi.2011.12.004

EVEN-CHEN, Z., & ITAI, C. (1975). The Role of Abscisic Acid in Senescence of Detached Tobacco Leaves. Physiologia Plantarum, 34(2), 97-100. doi:10.1111/j.1399-3054.1975.tb03799.x

Fan, J., Hill, L., Crooks, C., Doerner, P., & Lamb, C. (2009). Abscisic Acid Has a Key Role in Modulating Diverse Plant-Pathogen Interactions. Plant Physiology, 150(4), 1750-1761. doi:10.1104/pp.109.137943

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523. doi:10.1111/j.1469-8137.2006.01787.x

Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387-415. doi:10.1146/annurev.arplant.59.032607.092740

Fischer, A. M. (2012). The Complex Regulation of Senescence. Critical Reviews in Plant Sciences, 31(2), 124-147. doi:10.1080/07352689.2011.616065

Freschi, L. (2013). Nitric oxide and phytohormone interactions: current status and perspectives. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00398

Garcia-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., & Blatt, M. R. (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences, 100(19), 11116-11121. doi:10.1073/pnas.1434381100

Garcı́a-Mata, C., & Lamattina, L. (2001). Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiology, 126(3), 1196-1204. doi:10.1104/pp.126.3.1196

Garcı́a-Mata, C., & Lamattina, L. (2002). Nitric Oxide and Abscisic Acid Cross Talk in Guard Cells. Plant Physiology, 128(3), 790-792. doi:10.1104/pp.011020

Garcia-Mata, C., & Lamattina, L. (2007). Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide, 17(3-4), 143-151. doi:10.1016/j.niox.2007.08.001

Gaupels, F., Kuruthukulangarakoola, G. T., & Durner, J. (2011). Upstream and downstream signals of nitric oxide in pathogen defence. Current Opinion in Plant Biology, 14(6), 707-714. doi:10.1016/j.pbi.2011.07.005

Gepstein, S., & Thimann, K. V. (1980). Changes in the abscisic acid content of oat leaves during senescence. Proceedings of the National Academy of Sciences, 77(4), 2050-2053. doi:10.1073/pnas.77.4.2050

Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205-227. doi:10.1146/annurev.phyto.43.040204.135923

GRAEBER, K., NAKABAYASHI, K., MIATTON, E., LEUBNER-METZGER, G., & SOPPE, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35(10), 1769-1786. doi:10.1111/j.1365-3040.2012.02542.x

Guo, F.-Q., & Crawford, N. M. (2005). Arabidopsis Nitric Oxide Synthase1 Is Targeted to Mitochondria and Protects against Oxidative Damage and Dark-Induced Senescence. The Plant Cell, 17(12), 3436-3450. doi:10.1105/tpc.105.037770

Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770

GUO, Y., & GAN, S.-S. (2011). Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant, Cell & Environment, 35(3), 644-655. doi:10.1111/j.1365-3040.2011.02442.x

Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007

Han, S., Tang, R., Anderson, L. K., Woerner, T. E., & Pei, Z.-M. (2003). A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature, 425(6954), 196-200. doi:10.1038/nature01932

Hancock, J. T., Neill, S. J., & Wilson, I. D. (2011). Nitric oxide and ABA in the control of plant function. Plant Science, 181(5), 555-559. doi:10.1016/j.plantsci.2011.03.017

Haruta, M., & Sussman, M. R. (2012). The Effect of a Genetically Reduced Plasma Membrane Protonmotive Force on Vegetative Growth of Arabidopsis. Plant Physiology, 158(3), 1158-1171. doi:10.1104/pp.111.189167

Hasanuzzaman, M., & Fujita, M. (2013). Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22(3), 584-596. doi:10.1007/s10646-013-1050-4

Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463

He, J.-M., Ma, X.-G., Zhang, Y., Sun, T.-F., Xu, F.-F., Chen, Y.-P., … Yue, M. (2013). Role and Interrelationship of Gα Protein, Hydrogen Peroxide, and Nitric Oxide in Ultraviolet B-Induced Stomatal Closure in Arabidopsis Leaves. Plant Physiology, 161(3), 1570-1583. doi:10.1104/pp.112.211623

Holdsworth, M. J., Bentsink, L., & Soppe, W. J. J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist, 179(1), 33-54. doi:10.1111/j.1469-8137.2008.02437.x

Hung, K. T., & Kao, C. H. (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology, 160(8), 871-879. doi:10.1078/0176-1617-01118

Hung, K. T., & Kao, C. H. (2004). Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. Journal of Plant Physiology, 161(1), 43-52. doi:10.1078/0176-1617-01178

Janicka-Russak, M., & Kłobus, G. (2007). Modification of plasma membrane and vacuolar H+-ATPases in response to NaCL and ABA. Journal of Plant Physiology, 164(3), 295-302. doi:10.1016/j.jplph.2006.01.014

Joudoi, T., Shichiri, Y., Kamizono, N., Akaike, T., Sawa, T., Yoshitake, J., … Iwai, S. (2013). Nitrated Cyclic GMP Modulates Guard Cell Signaling in Arabidopsis. The Plant Cell, 25(2), 558-571. doi:10.1105/tpc.112.105049

Khanna-Chopra, R. (2011). Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma, 249(3), 469-481. doi:10.1007/s00709-011-0308-z

Kim, T.-H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., … Schroeder, J. I. (2011). Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 21(11), 990-997. doi:10.1016/j.cub.2011.04.045

Kwon, E., Feechan, A., Yun, B.-W., Hwang, B.-H., Pallas, J. A., Kang, J.-G., & Loake, G. J. (2012). AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta, 236(3), 887-900. doi:10.1007/s00425-012-1697-8

L’Haridon, F., Besson-Bard, A., Binda, M., Serrano, M., Abou-Mansour, E., Balet, F., … Métraux, J.-P. (2011). A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity. PLoS Pathogens, 7(7), e1002148. doi:10.1371/journal.ppat.1002148

Lamattina, L., García-Mata, C., Graziano, M., & Pagnussat, G. (2003). NITRICOXIDE: The Versatility of an Extensive Signal Molecule. Annual Review of Plant Biology, 54(1), 109-136. doi:10.1146/annurev.arplant.54.031902.134752

Lazalt, A. M., Beligni, M. V., & Lamattina*, L. (1997). European Journal of Plant Pathology, 103(7), 643-651. doi:10.1023/a:1008604410875

Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D., & Hetherington, A. M. (1998). Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proceedings of the National Academy of Sciences, 95(26), 15837-15842. doi:10.1073/pnas.95.26.15837

Leshem, Y. Y., Wills, R. B. H., & Ku, V. V.-V. (1998). Evidence for the function of the free radical gas — nitric oxide (NO•) — as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry, 36(11), 825-833. doi:10.1016/s0981-9428(99)80020-5

Li, J.-H., Liu, Y.-Q., Lü, P., Lin, H.-F., Bai, Y., Wang, X.-C., & Chen, Y.-L. (2009). A Signaling Pathway Linking Nitric Oxide Production to Heterotrimeric G Protein and Hydrogen Peroxide Regulates Extracellular Calmodulin Induction of Stomatal Closure in Arabidopsis. Plant Physiology, 150(1), 114-124. doi:10.1104/pp.109.137067

Li, Z., Peng, J., Wen, X., & Guo, H. (2012). Gene Network Analysis and Functional Studies of Senescence-associated Genes Reveal Novel Regulators of Arabidopsis Leaf SenescenceF. Journal of Integrative Plant Biology, 54(8), 526-539. doi:10.1111/j.1744-7909.2012.01136.x

Libourel, I. G. L., Bethke, P. C., De Michele, R., & Jones, R. L. (2005). Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta, 223(4), 813-820. doi:10.1007/s00425-005-0117-8

Lim, P. O., Kim, H. J., & Gil Nam, H. (2007). Leaf Senescence. Annual Review of Plant Biology, 58(1), 115-136. doi:10.1146/annurev.arplant.57.032905.105316

Lindermayr, C., Saalbach, G., & Durner, J. (2005). Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis. Plant Physiology, 137(3), 921-930. doi:10.1104/pp.104.058719

Liu, F., & Guo, F.-Q. (2013). Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis. PLoS ONE, 8(2), e56345. doi:10.1371/journal.pone.0056345

Liu, H., Lau, E., Lam, M. P. Y., Chu, H., Li, S., Huang, G., … Tao, Y. (2010). OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast function. New Phytologist, 187(1), 83-105. doi:10.1111/j.1469-8137.2010.03264.x

Liu, H.-Y., Yu, X., Cui, D.-Y., Sun, M.-H., Sun, W.-N., Tang, Z.-C., … Su, W.-A. (2007). The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Research, 17(7), 638-649. doi:10.1038/cr.2007.34

Liu, Y., Shi, L., Ye, N., Liu, R., Jia, W., & Zhang, J. (2009). Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytologist, 183(4), 1030-1042. doi:10.1111/j.1469-8137.2009.02899.x

Liu, Y., Ye, N., Liu, R., Chen, M., & Zhang, J. (2010). H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany, 61(11), 2979-2990. doi:10.1093/jxb/erq125

Lozano-Juste, J., Colom-Moreno, R., & León, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62(10), 3501-3517. doi:10.1093/jxb/err042

Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023

Lozano-Juste, J., & León, J. (2010). Nitric oxide modulates sensitivity to ABA. Plant Signaling & Behavior, 5(3), 314-316. doi:10.4161/psb.5.3.11235

Lu, S., Su, W., Li, H., & Guo, Z. (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47(2), 132-138. doi:10.1016/j.plaphy.2008.10.006

Ma, W. (2011). Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Science, 181(4), 342-346. doi:10.1016/j.plantsci.2011.06.002

A.‐H.‐Mackerness, S., Surplus, S. L., Blake, P., John, C. F., Buchanan‐Wollaston, V., Jordan, B. R., & Thomas, B. (1999). Ultraviolet‐B‐induced stress and changes in gene expression in Arabidopsis thaliana  : role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant, Cell & Environment, 22(11), 1413-1423. doi:10.1046/j.1365-3040.1999.00499.x

MacRobbie, E. A. C. (2000). ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release. Proceedings of the National Academy of Sciences, 97(22), 12361-12368. doi:10.1073/pnas.220417197

Mandal, M. K., Chandra-Shekara, A. C., Jeong, R.-D., Yu, K., Zhu, S., Chanda, B., … Kachroo, P. (2012). Oleic Acid–Dependent Modulation of NITRIC OXIDE ASSOCIATED1 Protein Levels Regulates Nitric Oxide–Mediated Defense Signaling in Arabidopsis. The Plant Cell, 24(4), 1654-1674. doi:10.1105/tpc.112.096768

Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J.-P., … Truong, H.-N. (2008). The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy. Plant Physiology, 149(2), 949-960. doi:10.1104/pp.108.126938

Meimoun, P., Vidal, G., Bohrer, A.-S., Lehner, A., Tran, D., Briand, J., … Rona, J.-P. (2009). Intracellular Ca2+stores could participate to abscisic acid-induced depolarization and stomatal closure inArabidopsis thaliana. Plant Signaling & Behavior, 4(9), 830-835. doi:10.4161/psb.4.9.9396

Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126(5), 969-980. doi:10.1016/j.cell.2006.06.054

Mendel, R. R. (2002). Molybdoenzymes and molybdenum cofactor in plants. Journal of Experimental Botany, 53(375), 1689-1698. doi:10.1093/jxb/erf038

Mengiste, T. (2012). Plant Immunity to Necrotrophs. Annual Review of Phytopathology, 50(1), 267-294. doi:10.1146/annurev-phyto-081211-172955

MISHINA, T. E., LAMB, C., & ZEIER, J. (2007). Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant, Cell and Environment, 30(1), 39-52. doi:10.1111/j.1365-3040.2006.01604.x

Misra, A. N., Srivastava, A., & Strasser, R. J. (2001). Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. Journal of Plant Physiology, 158(9), 1173-1181. doi:10.1078/s0176-1617(04)70144-3

Miura, K., Lee, J., Jin, J. B., Yoo, C. Y., Miura, T., & Hasegawa, P. M. (2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences, 106(13), 5418-5423. doi:10.1073/pnas.0811088106

Modolo, L. V., Augusto, O., Almeida, I. M. G., Pinto-Maglio, C. A. F., Oliveira, H. C., Seligman, K., & Salgado, I. (2006). Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Science, 171(1), 34-40. doi:10.1016/j.plantsci.2006.02.010

Mohr, P. G., & Cahill, D. M. (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Functional Plant Biology, 30(4), 461. doi:10.1071/fp02231

Molassiotis, A., Tanou, G., & Diamantidis, G. (2010). NO says more than ‘YES’ to salt tolerance. Plant Signaling & Behavior, 5(3), 209-212. doi:10.4161/psb.5.3.10738

Moreau, M., Lee, G. I., Wang, Y., Crane, B. R., & Klessig, D. F. (2008). AtNOS/AtNOA1 Is a FunctionalArabidopsis thalianacGTPase and Not a Nitric-oxide Synthase. Journal of Biological Chemistry, 283(47), 32957-32967. doi:10.1074/jbc.m804838200

Moreau, M., Lindermayr, C., Durner, J., & Klessig, D. F. (2010). NO synthesis and signaling in plants - where do we stand? Physiologia Plantarum, 138(4), 372-383. doi:10.1111/j.1399-3054.2009.01308.x

Mur, L. A. J., Mandon, J., Persijn, S., Cristescu, S. M., Moshkov, I. E., Novikova, G. V., … Gupta, K. J. (2012). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5(0), pls052-pls052. doi:10.1093/aobpla/pls052

Neill, S. J., Desikan, R., & Hancock, J. T. (2003). Nitric oxide signalling in plants. New Phytologist, 159(1), 11-35. doi:10.1046/j.1469-8137.2003.00804.x

Neill, S. J., Desikan, R., Clarke, A., & Hancock, J. T. (2002). Nitric Oxide Is a Novel Component of Abscisic Acid Signaling in Stomatal Guard Cells. Plant Physiology, 128(1), 13-16. doi:10.1104/pp.010707

Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53(372), 1237-1247. doi:10.1093/jxb/53.372.1237

Pandey, S., Zhang, W., & Assmann, S. M. (2007). Roles of ion channels and transporters in guard cell signal transduction. FEBS Letters, 581(12), 2325-2336. doi:10.1016/j.febslet.2007.04.008

Piterková, J., Luhová, L., Hofman, J., Turečková, V., Novák, O., Petřivalský, M., & Fellner, M. (2012). Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions. Annals of Botany, 110(4), 767-776. doi:10.1093/aob/mcs141

Procházková, D., & Wilhelmová, N. (2011). Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide, 24(2), 61-65. doi:10.1016/j.niox.2011.01.005

Rahman, T. A. E., Oirdi, M. E., Gonzalez-Lamothe, R., & Bouarab, K. (2012). Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions, 25(12), 1584-1593. doi:10.1094/mpmi-07-12-0187-r

RASUL, S., DUBREUIL-MAURIZI, C., LAMOTTE, O., KOEN, E., POINSSOT, B., ALCARAZ, G., … JEANDROZ, S. (2012). Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant, Cell & Environment, 35(8), 1483-1499. doi:10.1111/j.1365-3040.2012.02505.x

Rasul, S., Wendehenne, D., & Jeandroz, S. (2012). Study of oligogalacturonides-triggered Nitric Oxide (NO) production provokes new questioning about the origin of NO biosynthesis in plants. Plant Signaling & Behavior, 7(8), 1031-1033. doi:10.4161/psb.20658

RIBEIRO, D. M., DESIKAN, R., BRIGHT, J., CONFRARIA, A., HARRISON, J., HANCOCK, J. T., … WILSON, I. D. (2009). Differential requirement for NO during ABA-induced stomatal closure in turgid and wilted leaves. Plant, Cell & Environment, 32(1), 46-57. doi:10.1111/j.1365-3040.2008.01906.x

Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447

ROELFSEMA, M. R. G., & HEDRICH, R. (2010). Making sense out of Ca2+signals: their role in regulating stomatal movements. Plant, Cell & Environment, 33(3), 305-321. doi:10.1111/j.1365-3040.2009.02075.x

Rosales, E. P., Iannone, M. F., Groppa, M. D., & Benavides, M. P. (2011). Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiology and Biochemistry, 49(2), 124-130. doi:10.1016/j.plaphy.2010.10.009

Sánchez-Vallet, A., López, G., Ramos, B., Delgado-Cerezo, M., Riviere, M.-P., Llorente, F., … Molina, A. (2012). Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina. Plant Physiology, 160(4), 2109-2124. doi:10.1104/pp.112.200154

Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424(3), 439-448. doi:10.1042/bj20091221

Shi, S., Wang, G., Wang, Y., Zhang, L., & Zhang, L. (2005). Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide, 13(1), 1-9. doi:10.1016/j.niox.2005.04.006

Siddiqui, M. H., Al-Whaibi, M. H., & Basalah, M. O. (2010). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248(3), 447-455. doi:10.1007/s00709-010-0206-9

Simontacchi, M., García-Mata, C., Bartoli, C. G., Santa-María, G. E., & Lamattina, L. (2013). Nitric oxide as a key component in hormone-regulated processes. Plant Cell Reports, 32(6), 853-866. doi:10.1007/s00299-013-1434-1

Simontacchi, M., Jasid, S., & Puntarulo, S. (s. f.). Enzymatic Sources of Nitric Oxide during Seed Germination. Nitric Oxide in Plant Growth, Development and Stress Physiology, 73-90. doi:10.1007/7089_2006_085

SMART, C. M. (1994). Gene expression during leaf senescence. New Phytologist, 126(3), 419-448. doi:10.1111/j.1469-8137.1994.tb04243.x

Sokolovski, S., & Blatt, M. R. (2004). Nitric Oxide Block of Outward-Rectifying K+ Channels Indicates Direct Control by Protein Nitrosylation in Guard Cells. Plant Physiology, 136(4), 4275-4284. doi:10.1104/pp.104.050344

TAN, J., WANG, C., XIANG, B., HAN, R., & GUO, Z. (2012). Hydrogen peroxide and nitric oxide mediated cold- and dehydration-inducedmyo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant, Cell & Environment, 36(2), 288-299. doi:10.1111/j.1365-3040.2012.02573.x

Tossi, V., Cassia, R., Bruzzone, S., Zocchi, E., & Lamattina, L. (2012). ABA says NO to UV-B: a universal response? Trends in Plant Science, 17(9), 510-517. doi:10.1016/j.tplants.2012.05.007

Tossi, V., Lamattina, L., & Cassia, R. (2009). An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytologist, 181(4), 871-879. doi:10.1111/j.1469-8137.2008.02722.x

Vahisalu, T., Kollist, H., Wang, Y.-F., Nishimura, N., Chan, W.-Y., Valerio, G., … Kangasjärvi, J. (2008). SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 452(7186), 487-491. doi:10.1038/nature06608

Vahisalu, T., Puzõrjova, I., Brosché, M., Valk, E., Lepiku, M., Moldau, H., … Kollist, H. (2010). Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal, 62(3), 442-453. doi:10.1111/j.1365-313x.2010.04159.x

Wang, P., Du, Y., Li, Y., Ren, D., & Song, C.-P. (2010). Hydrogen Peroxide–Mediated Activation of MAP Kinase 6 Modulates Nitric Oxide Biosynthesis and Signal Transduction in Arabidopsis. The Plant Cell, 22(9), 2981-2998. doi:10.1105/tpc.109.072959

Wang, Y., Chen, C., Loake, G. J., & Chu, C. (2010). Nitric oxide: promoter or suppressor of programmed cell death? Protein & Cell, 1(2), 133-142. doi:10.1007/s13238-010-0018-x

Wang, Y., Feng, H., Qu, Y., Cheng, J., Zhao, Z., Zhang, M., … An, L. (2006). The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environmental and Experimental Botany, 57(1-2), 51-61. doi:10.1016/j.envexpbot.2005.04.009

Wang, Y., Lin, A., Loake, G. J., & Chu, C. (2013). H2O2-induced Leaf Cell Death and the Crosstalk of Reactive Nitric/Oxygen SpeciesF. Journal of Integrative Plant Biology, 55(3), 202-208. doi:10.1111/jipb.12032

Wimalasekera, R., Tebartz, F., & Scherer, G. F. E. (2011). Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science, 181(5), 593-603. doi:10.1016/j.plantsci.2011.04.002

Xing, H., Tan, L., An, L., Zhao, Z., Wang, S., & Zhang, C. (2004). Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: Inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regulation, 42(1), 61-68. doi:10.1023/b:grow.0000014894.48683.1b

Yang, J., Zhang, J., Wang, Z., Zhu, Q., & Liu, L. (2002). Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta, 215(4), 645-652. doi:10.1007/s00425-002-0789-2

YANG, J. C., ZHANG, J. H., WANG, Z. Q., ZHU, Q. S., & LIU, L. J. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell and Environment, 26(10), 1621-1631. doi:10.1046/j.1365-3040.2003.01081.x

Yun, B.-W., Feechan, A., Yin, M., Saidi, N. B. B., Le Bihan, T., Yu, M., … Loake, G. J. (2011). S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature, 478(7368), 264-268. doi:10.1038/nature10427

Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., … Durner, J. (2004). From The Cover: Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proceedings of the National Academy of Sciences, 101(44), 15811-15816. doi:10.1073/pnas.0404536101

Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X., & Tan, M. (2007). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 175(1), 36-50. doi:10.1111/j.1469-8137.2007.02071.x

Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010). Nitric Oxide Mediates Brassinosteroid-Induced ABA Biosynthesis Involved in Oxidative Stress Tolerance in Maize Leaves. Plant and Cell Physiology, 52(1), 181-192. doi:10.1093/pcp/pcq187

ZHANG, Y., TAN, J., GUO, Z., LU, S., HE, S., SHU, W., & ZHOU, B. (2009). Increased abscisic acid levels in transgenic tobacco over-expressing 9cis-epoxycarotenoid dioxygenase influence H2O2and NO production and antioxidant defences. Plant, Cell & Environment, 32(5), 509-519. doi:10.1111/j.1365-3040.2009.01945.x

Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545-555. doi:10.1007/s00425-006-0242-z

Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B., & Zhang, L. (2004). Nitric Oxide Functions as a Signal in Salt Resistance in the Calluses from Two Ecotypes of Reed. Plant Physiology, 134(2), 849-857. doi:10.1104/pp.103.030023

Zheng, Y., Schumaker, K. S., & Guo, Y. (2012). Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 109(31), 12822-12827. doi:10.1073/pnas.1202630109

Zhu, J.-K. (2002). SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 53(1), 247-273. doi:10.1146/annurev.arplant.53.091401.143329

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem