- -

Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leon Ramos, Jose es_ES
dc.contributor.author Castillo López del Toro, Mª Cruz es_ES
dc.contributor.author Coego González, Alberto es_ES
dc.contributor.author Lozano Juste, Jorge es_ES
dc.contributor.author Mir Moreno, Ricardo es_ES
dc.date.accessioned 2017-04-03T10:25:40Z
dc.date.available 2017-04-03T10:25:40Z
dc.date.issued 2014-03
dc.identifier.issn 0022-0957
dc.identifier.uri http://hdl.handle.net/10251/79360
dc.description.abstract [EN] The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses es_ES
dc.description.sponsorship This work was supported by MICINN (Spain) grants BIO2011-27526 and CONSOLIDER CSD2007-00057 to JL and postdoctoral contracts to MCC and AC. RM was funded by a pre-doctoral fellowship of the FPU Program from MEC (Spain). We thank Michael Holdsworth (University of Nottingham, UK) for critical reading of this manuscript and for his helpful comments and corrections. We would also like to express our appreciation for all the contributions reported in this research area, and particularly to those researchers who have not been cited in this review because of the limitations of manuscript length.
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ABA es_ES
dc.subject Abiotic stress es_ES
dc.subject Defence es_ES
dc.subject Leaf senescence es_ES
dc.subject Nitric oxide es_ES
dc.subject Seed germination es_ES
dc.subject Stomatal closure es_ES
dc.title Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/ert454
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2011-27526/ES/EL OXIDO NITRICO COMO MODULADOR DE LA SEÑALIZACION MEDIADA POR ABA Y GIBERELINAS EN ARABIDOPSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Leon Ramos, J.; Castillo López Del Toro, MC.; Coego González, A.; Lozano Juste, J.; Mir Moreno, R. (2014). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany. 65(4):907-921. https://doi.org/10.1093/jxb/ert454 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/jxb/ert454 es_ES
dc.description.upvformatpinicio 907 es_ES
dc.description.upvformatpfin 921 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 284765 es_ES
dc.identifier.pmid 24371253
dc.contributor.funder Ministerio de Educación y Ciencia
dc.description.references ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x es_ES
dc.description.references Asai, S., & Yoshioka, H. (2009). Nitric Oxide as a Partner of Reactive Oxygen Species Participates in Disease Resistance to Necrotrophic Pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22(6), 619-629. doi:10.1094/mpmi-22-6-0619 es_ES
dc.description.references Asselbergh, B., De Vleesschauwer, D., & Höfte, M. (2008). Global Switches and Fine-Tuning—ABA Modulates Plant Pathogen Defense. Molecular Plant-Microbe Interactions, 21(6), 709-719. doi:10.1094/mpmi-21-6-0709 es_ES
dc.description.references Batak, I., Dević, M., Gibal, Z., Grubišić, D., Poff, K. L., & Konjević, R. (2002). The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Science Research, 12(4), 253-259. doi:10.1079/ssr2002118 es_ES
dc.description.references Beligni, M. V., & Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 210(2), 215-221. doi:10.1007/pl00008128 es_ES
dc.description.references Bellin, D., Asai, S., Delledonne, M., & Yoshioka, H. (2013). Nitric Oxide as a Mediator for Defense Responses. Molecular Plant-Microbe Interactions, 26(3), 271-277. doi:10.1094/mpmi-09-12-0214-cr es_ES
dc.description.references Bethke, P. C., Libourel, I. G. L., Aoyama, N., Chung, Y.-Y., Still, D. W., & Jones, R. L. (2007). The Arabidopsis Aleurone Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and Necessary for Seed Dormancy. Plant Physiology, 143(3), 1173-1188. doi:10.1104/pp.106.093435 es_ES
dc.description.references Bethke, P. C., Libourel, I. G. L., & Jones, R. L. (2005). Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany, 57(3), 517-526. doi:10.1093/jxb/erj060 es_ES
dc.description.references Bethke, P. C., Libourel, I. G. L., Reinöhl, V., & Jones, R. L. (2005). Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta, 223(4), 805-812. doi:10.1007/s00425-005-0116-9 es_ES
dc.description.references Bright, J., Desikan, R., Hancock, J. T., Weir, I. S., & Neill, S. J. (2005). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2 O2 synthesis. The Plant Journal, 45(1), 113-122. doi:10.1111/j.1365-313x.2005.02615.x es_ES
dc.description.references Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., … Leaver, C. J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42(4), 567-585. doi:10.1111/j.1365-313x.2005.02399.x es_ES
dc.description.references Cao, F. Y., Yoshioka, K., & Desveaux, D. (2011). The roles of ABA in plant–pathogen interactions. Journal of Plant Research, 124(4), 489-499. doi:10.1007/s10265-011-0409-y es_ES
dc.description.references Cerana, M., Bonza, M. C., Harris, R., Sanders, D., & Michelis, M. I. (2006). Abscisic Acid Stimulates the Expression of Two Isoforms of Plasma Membrane Ca2+-ATPase in Arabidopsis thaliana Seedlings. Plant Biology, 8(5), 572-578. doi:10.1055/s-2006-924111 es_ES
dc.description.references Choi, D. S., & Hwang, B. K. (2011). Proteomics and Functional Analyses of Pepper Abscisic Acid–Responsive 1 (ABR1), Which Is Involved in Cell Death and Defense Signaling. The Plant Cell, 23(2), 823-842. doi:10.1105/tpc.110.082081 es_ES
dc.description.references Chun, H. J., Park, H. C., Koo, S. C., Lee, J. H., Park, C. Y., Choi, M. S., … Kim, M. C. (2012). Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Molecules and Cells, 34(5), 463-471. doi:10.1007/s10059-012-0213-0 es_ES
dc.description.references Corpas, F. J., Barroso, J. B., Carreras, A., Quirós, M., León, A. M., Romero-Puertas, M. C., … del Río, L. A. (2004). Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. Plant Physiology, 136(1), 2722-2733. doi:10.1104/pp.104.042812 es_ES
dc.description.references Corpas, F. J., Barroso, J. B., Carreras, A., Valderrama, R., Palma, J. M., León, A. M., … del Río, L. A. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 224(2), 246-254. doi:10.1007/s00425-005-0205-9 es_ES
dc.description.references Corpas, F. J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J. M., & Barroso, J. B. (2011). Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Science, 181(5), 604-611. doi:10.1016/j.plantsci.2011.04.005 es_ES
dc.description.references Daszkowska-Golec, A., & Szarejko, I. (2013). Open or Close the Gate – Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00138 es_ES
dc.description.references Davies, W. J., & Zhang, J. (1991). Root Signals and the Regulation of Growth and Development of Plants in Drying Soil. Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 55-76. doi:10.1146/annurev.pp.42.060191.000415 es_ES
dc.description.references De Michele, R., Formentin, E., Todesco, M., Toppo, S., Carimi, F., Zottini, M., … Lo Schiavo, F. (2008). Transcriptome analysis ofMedicago truncatulaleaf senescence: similarities and differences in metabolic and transcriptional regulations as compared withArabidopsis, nodule senescence and nitric oxide signalling. New Phytologist, 181(3), 563-575. doi:10.1111/j.1469-8137.2008.02684.x es_ES
dc.description.references De Torres Zabala, M., Bennett, M. H., Truman, W. H., & Grant, M. R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. The Plant Journal, 59(3), 375-386. doi:10.1111/j.1365-313x.2009.03875.x es_ES
dc.description.references De Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., … Grant, M. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. The EMBO Journal, 26(5), 1434-1443. doi:10.1038/sj.emboj.7601575 es_ES
dc.description.references Delledonne, M., Xia, Y., Dixon, R. A., & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394(6693), 585-588. doi:10.1038/29087 es_ES
dc.description.references Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences, 98(23), 13454-13459. doi:10.1073/pnas.231178298 es_ES
dc.description.references Desikan, R., Griffiths, R., Hancock, J., & Neill, S. (2002). A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(25), 16314-16318. doi:10.1073/pnas.252461999 es_ES
dc.description.references Dubovskaya, L. V., Bakakina, Y. S., Kolesneva, E. V., Sodel, D. L., McAinsh, M. R., Hetherington, A. M., & Volotovski, I. D. (2011). cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytologist, 191(1), 57-69. doi:10.1111/j.1469-8137.2011.03661.x es_ES
dc.description.references Durbak, A., Yao, H., & McSteen, P. (2012). Hormone signaling in plant development. Current Opinion in Plant Biology, 15(1), 92-96. doi:10.1016/j.pbi.2011.12.004 es_ES
dc.description.references EVEN-CHEN, Z., & ITAI, C. (1975). The Role of Abscisic Acid in Senescence of Detached Tobacco Leaves. Physiologia Plantarum, 34(2), 97-100. doi:10.1111/j.1399-3054.1975.tb03799.x es_ES
dc.description.references Fan, J., Hill, L., Crooks, C., Doerner, P., & Lamb, C. (2009). Abscisic Acid Has a Key Role in Modulating Diverse Plant-Pathogen Interactions. Plant Physiology, 150(4), 1750-1761. doi:10.1104/pp.109.137943 es_ES
dc.description.references Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523. doi:10.1111/j.1469-8137.2006.01787.x es_ES
dc.description.references Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387-415. doi:10.1146/annurev.arplant.59.032607.092740 es_ES
dc.description.references Fischer, A. M. (2012). The Complex Regulation of Senescence. Critical Reviews in Plant Sciences, 31(2), 124-147. doi:10.1080/07352689.2011.616065 es_ES
dc.description.references Freschi, L. (2013). Nitric oxide and phytohormone interactions: current status and perspectives. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00398 es_ES
dc.description.references Garcia-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., & Blatt, M. R. (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences, 100(19), 11116-11121. doi:10.1073/pnas.1434381100 es_ES
dc.description.references Garcı́a-Mata, C., & Lamattina, L. (2001). Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiology, 126(3), 1196-1204. doi:10.1104/pp.126.3.1196 es_ES
dc.description.references Garcı́a-Mata, C., & Lamattina, L. (2002). Nitric Oxide and Abscisic Acid Cross Talk in Guard Cells. Plant Physiology, 128(3), 790-792. doi:10.1104/pp.011020 es_ES
dc.description.references Garcia-Mata, C., & Lamattina, L. (2007). Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide, 17(3-4), 143-151. doi:10.1016/j.niox.2007.08.001 es_ES
dc.description.references Gaupels, F., Kuruthukulangarakoola, G. T., & Durner, J. (2011). Upstream and downstream signals of nitric oxide in pathogen defence. Current Opinion in Plant Biology, 14(6), 707-714. doi:10.1016/j.pbi.2011.07.005 es_ES
dc.description.references Gepstein, S., & Thimann, K. V. (1980). Changes in the abscisic acid content of oat leaves during senescence. Proceedings of the National Academy of Sciences, 77(4), 2050-2053. doi:10.1073/pnas.77.4.2050 es_ES
dc.description.references Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205-227. doi:10.1146/annurev.phyto.43.040204.135923 es_ES
dc.description.references GRAEBER, K., NAKABAYASHI, K., MIATTON, E., LEUBNER-METZGER, G., & SOPPE, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35(10), 1769-1786. doi:10.1111/j.1365-3040.2012.02542.x es_ES
dc.description.references Guo, F.-Q., & Crawford, N. M. (2005). Arabidopsis Nitric Oxide Synthase1 Is Targeted to Mitochondria and Protects against Oxidative Damage and Dark-Induced Senescence. The Plant Cell, 17(12), 3436-3450. doi:10.1105/tpc.105.037770 es_ES
dc.description.references Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770 es_ES
dc.description.references GUO, Y., & GAN, S.-S. (2011). Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant, Cell & Environment, 35(3), 644-655. doi:10.1111/j.1365-3040.2011.02442.x es_ES
dc.description.references Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007 es_ES
dc.description.references Han, S., Tang, R., Anderson, L. K., Woerner, T. E., & Pei, Z.-M. (2003). A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature, 425(6954), 196-200. doi:10.1038/nature01932 es_ES
dc.description.references Hancock, J. T., Neill, S. J., & Wilson, I. D. (2011). Nitric oxide and ABA in the control of plant function. Plant Science, 181(5), 555-559. doi:10.1016/j.plantsci.2011.03.017 es_ES
dc.description.references Haruta, M., & Sussman, M. R. (2012). The Effect of a Genetically Reduced Plasma Membrane Protonmotive Force on Vegetative Growth of Arabidopsis. Plant Physiology, 158(3), 1158-1171. doi:10.1104/pp.111.189167 es_ES
dc.description.references Hasanuzzaman, M., & Fujita, M. (2013). Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22(3), 584-596. doi:10.1007/s10646-013-1050-4 es_ES
dc.description.references Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463 es_ES
dc.description.references He, J.-M., Ma, X.-G., Zhang, Y., Sun, T.-F., Xu, F.-F., Chen, Y.-P., … Yue, M. (2013). Role and Interrelationship of Gα Protein, Hydrogen Peroxide, and Nitric Oxide in Ultraviolet B-Induced Stomatal Closure in Arabidopsis Leaves. Plant Physiology, 161(3), 1570-1583. doi:10.1104/pp.112.211623 es_ES
dc.description.references Holdsworth, M. J., Bentsink, L., & Soppe, W. J. J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist, 179(1), 33-54. doi:10.1111/j.1469-8137.2008.02437.x es_ES
dc.description.references Hung, K. T., & Kao, C. H. (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology, 160(8), 871-879. doi:10.1078/0176-1617-01118 es_ES
dc.description.references Hung, K. T., & Kao, C. H. (2004). Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. Journal of Plant Physiology, 161(1), 43-52. doi:10.1078/0176-1617-01178 es_ES
dc.description.references Janicka-Russak, M., & Kłobus, G. (2007). Modification of plasma membrane and vacuolar H+-ATPases in response to NaCL and ABA. Journal of Plant Physiology, 164(3), 295-302. doi:10.1016/j.jplph.2006.01.014 es_ES
dc.description.references Joudoi, T., Shichiri, Y., Kamizono, N., Akaike, T., Sawa, T., Yoshitake, J., … Iwai, S. (2013). Nitrated Cyclic GMP Modulates Guard Cell Signaling in Arabidopsis. The Plant Cell, 25(2), 558-571. doi:10.1105/tpc.112.105049 es_ES
dc.description.references Khanna-Chopra, R. (2011). Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma, 249(3), 469-481. doi:10.1007/s00709-011-0308-z es_ES
dc.description.references Kim, T.-H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., … Schroeder, J. I. (2011). Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 21(11), 990-997. doi:10.1016/j.cub.2011.04.045 es_ES
dc.description.references Kwon, E., Feechan, A., Yun, B.-W., Hwang, B.-H., Pallas, J. A., Kang, J.-G., & Loake, G. J. (2012). AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta, 236(3), 887-900. doi:10.1007/s00425-012-1697-8 es_ES
dc.description.references L’Haridon, F., Besson-Bard, A., Binda, M., Serrano, M., Abou-Mansour, E., Balet, F., … Métraux, J.-P. (2011). A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity. PLoS Pathogens, 7(7), e1002148. doi:10.1371/journal.ppat.1002148 es_ES
dc.description.references Lamattina, L., García-Mata, C., Graziano, M., & Pagnussat, G. (2003). NITRICOXIDE: The Versatility of an Extensive Signal Molecule. Annual Review of Plant Biology, 54(1), 109-136. doi:10.1146/annurev.arplant.54.031902.134752 es_ES
dc.description.references Lazalt, A. M., Beligni, M. V., & Lamattina*, L. (1997). European Journal of Plant Pathology, 103(7), 643-651. doi:10.1023/a:1008604410875 es_ES
dc.description.references Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D., & Hetherington, A. M. (1998). Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proceedings of the National Academy of Sciences, 95(26), 15837-15842. doi:10.1073/pnas.95.26.15837 es_ES
dc.description.references Leshem, Y. Y., Wills, R. B. H., & Ku, V. V.-V. (1998). Evidence for the function of the free radical gas — nitric oxide (NO•) — as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry, 36(11), 825-833. doi:10.1016/s0981-9428(99)80020-5 es_ES
dc.description.references Li, J.-H., Liu, Y.-Q., Lü, P., Lin, H.-F., Bai, Y., Wang, X.-C., & Chen, Y.-L. (2009). A Signaling Pathway Linking Nitric Oxide Production to Heterotrimeric G Protein and Hydrogen Peroxide Regulates Extracellular Calmodulin Induction of Stomatal Closure in Arabidopsis. Plant Physiology, 150(1), 114-124. doi:10.1104/pp.109.137067 es_ES
dc.description.references Li, Z., Peng, J., Wen, X., & Guo, H. (2012). Gene Network Analysis and Functional Studies of Senescence-associated Genes Reveal Novel Regulators of Arabidopsis Leaf SenescenceF. Journal of Integrative Plant Biology, 54(8), 526-539. doi:10.1111/j.1744-7909.2012.01136.x es_ES
dc.description.references Libourel, I. G. L., Bethke, P. C., De Michele, R., & Jones, R. L. (2005). Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta, 223(4), 813-820. doi:10.1007/s00425-005-0117-8 es_ES
dc.description.references Lim, P. O., Kim, H. J., & Gil Nam, H. (2007). Leaf Senescence. Annual Review of Plant Biology, 58(1), 115-136. doi:10.1146/annurev.arplant.57.032905.105316 es_ES
dc.description.references Lindermayr, C., Saalbach, G., & Durner, J. (2005). Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis. Plant Physiology, 137(3), 921-930. doi:10.1104/pp.104.058719 es_ES
dc.description.references Liu, F., & Guo, F.-Q. (2013). Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis. PLoS ONE, 8(2), e56345. doi:10.1371/journal.pone.0056345 es_ES
dc.description.references Liu, H., Lau, E., Lam, M. P. Y., Chu, H., Li, S., Huang, G., … Tao, Y. (2010). OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast function. New Phytologist, 187(1), 83-105. doi:10.1111/j.1469-8137.2010.03264.x es_ES
dc.description.references Liu, H.-Y., Yu, X., Cui, D.-Y., Sun, M.-H., Sun, W.-N., Tang, Z.-C., … Su, W.-A. (2007). The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Research, 17(7), 638-649. doi:10.1038/cr.2007.34 es_ES
dc.description.references Liu, Y., Shi, L., Ye, N., Liu, R., Jia, W., & Zhang, J. (2009). Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytologist, 183(4), 1030-1042. doi:10.1111/j.1469-8137.2009.02899.x es_ES
dc.description.references Liu, Y., Ye, N., Liu, R., Chen, M., & Zhang, J. (2010). H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany, 61(11), 2979-2990. doi:10.1093/jxb/erq125 es_ES
dc.description.references Lozano-Juste, J., Colom-Moreno, R., & León, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62(10), 3501-3517. doi:10.1093/jxb/err042 es_ES
dc.description.references Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023 es_ES
dc.description.references Lozano-Juste, J., & León, J. (2010). Nitric oxide modulates sensitivity to ABA. Plant Signaling & Behavior, 5(3), 314-316. doi:10.4161/psb.5.3.11235 es_ES
dc.description.references Lu, S., Su, W., Li, H., & Guo, Z. (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47(2), 132-138. doi:10.1016/j.plaphy.2008.10.006 es_ES
dc.description.references Ma, W. (2011). Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Science, 181(4), 342-346. doi:10.1016/j.plantsci.2011.06.002 es_ES
dc.description.references A.‐H.‐Mackerness, S., Surplus, S. L., Blake, P., John, C. F., Buchanan‐Wollaston, V., Jordan, B. R., & Thomas, B. (1999). Ultraviolet‐B‐induced stress and changes in gene expression in Arabidopsis thaliana  : role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant, Cell & Environment, 22(11), 1413-1423. doi:10.1046/j.1365-3040.1999.00499.x es_ES
dc.description.references MacRobbie, E. A. C. (2000). ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release. Proceedings of the National Academy of Sciences, 97(22), 12361-12368. doi:10.1073/pnas.220417197 es_ES
dc.description.references Mandal, M. K., Chandra-Shekara, A. C., Jeong, R.-D., Yu, K., Zhu, S., Chanda, B., … Kachroo, P. (2012). Oleic Acid–Dependent Modulation of NITRIC OXIDE ASSOCIATED1 Protein Levels Regulates Nitric Oxide–Mediated Defense Signaling in Arabidopsis. The Plant Cell, 24(4), 1654-1674. doi:10.1105/tpc.112.096768 es_ES
dc.description.references Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J.-P., … Truong, H.-N. (2008). The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy. Plant Physiology, 149(2), 949-960. doi:10.1104/pp.108.126938 es_ES
dc.description.references Meimoun, P., Vidal, G., Bohrer, A.-S., Lehner, A., Tran, D., Briand, J., … Rona, J.-P. (2009). Intracellular Ca2+stores could participate to abscisic acid-induced depolarization and stomatal closure inArabidopsis thaliana. Plant Signaling & Behavior, 4(9), 830-835. doi:10.4161/psb.4.9.9396 es_ES
dc.description.references Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126(5), 969-980. doi:10.1016/j.cell.2006.06.054 es_ES
dc.description.references Mendel, R. R. (2002). Molybdoenzymes and molybdenum cofactor in plants. Journal of Experimental Botany, 53(375), 1689-1698. doi:10.1093/jxb/erf038 es_ES
dc.description.references Mengiste, T. (2012). Plant Immunity to Necrotrophs. Annual Review of Phytopathology, 50(1), 267-294. doi:10.1146/annurev-phyto-081211-172955 es_ES
dc.description.references MISHINA, T. E., LAMB, C., & ZEIER, J. (2007). Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant, Cell and Environment, 30(1), 39-52. doi:10.1111/j.1365-3040.2006.01604.x es_ES
dc.description.references Misra, A. N., Srivastava, A., & Strasser, R. J. (2001). Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. Journal of Plant Physiology, 158(9), 1173-1181. doi:10.1078/s0176-1617(04)70144-3 es_ES
dc.description.references Miura, K., Lee, J., Jin, J. B., Yoo, C. Y., Miura, T., & Hasegawa, P. M. (2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences, 106(13), 5418-5423. doi:10.1073/pnas.0811088106 es_ES
dc.description.references Modolo, L. V., Augusto, O., Almeida, I. M. G., Pinto-Maglio, C. A. F., Oliveira, H. C., Seligman, K., & Salgado, I. (2006). Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Science, 171(1), 34-40. doi:10.1016/j.plantsci.2006.02.010 es_ES
dc.description.references Mohr, P. G., & Cahill, D. M. (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Functional Plant Biology, 30(4), 461. doi:10.1071/fp02231 es_ES
dc.description.references Molassiotis, A., Tanou, G., & Diamantidis, G. (2010). NO says more than ‘YES’ to salt tolerance. Plant Signaling & Behavior, 5(3), 209-212. doi:10.4161/psb.5.3.10738 es_ES
dc.description.references Moreau, M., Lee, G. I., Wang, Y., Crane, B. R., & Klessig, D. F. (2008). AtNOS/AtNOA1 Is a FunctionalArabidopsis thalianacGTPase and Not a Nitric-oxide Synthase. Journal of Biological Chemistry, 283(47), 32957-32967. doi:10.1074/jbc.m804838200 es_ES
dc.description.references Moreau, M., Lindermayr, C., Durner, J., & Klessig, D. F. (2010). NO synthesis and signaling in plants - where do we stand? Physiologia Plantarum, 138(4), 372-383. doi:10.1111/j.1399-3054.2009.01308.x es_ES
dc.description.references Mur, L. A. J., Mandon, J., Persijn, S., Cristescu, S. M., Moshkov, I. E., Novikova, G. V., … Gupta, K. J. (2012). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5(0), pls052-pls052. doi:10.1093/aobpla/pls052 es_ES
dc.description.references Neill, S. J., Desikan, R., & Hancock, J. T. (2003). Nitric oxide signalling in plants. New Phytologist, 159(1), 11-35. doi:10.1046/j.1469-8137.2003.00804.x es_ES
dc.description.references Neill, S. J., Desikan, R., Clarke, A., & Hancock, J. T. (2002). Nitric Oxide Is a Novel Component of Abscisic Acid Signaling in Stomatal Guard Cells. Plant Physiology, 128(1), 13-16. doi:10.1104/pp.010707 es_ES
dc.description.references Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53(372), 1237-1247. doi:10.1093/jxb/53.372.1237 es_ES
dc.description.references Pandey, S., Zhang, W., & Assmann, S. M. (2007). Roles of ion channels and transporters in guard cell signal transduction. FEBS Letters, 581(12), 2325-2336. doi:10.1016/j.febslet.2007.04.008 es_ES
dc.description.references Piterková, J., Luhová, L., Hofman, J., Turečková, V., Novák, O., Petřivalský, M., & Fellner, M. (2012). Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions. Annals of Botany, 110(4), 767-776. doi:10.1093/aob/mcs141 es_ES
dc.description.references Procházková, D., & Wilhelmová, N. (2011). Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide, 24(2), 61-65. doi:10.1016/j.niox.2011.01.005 es_ES
dc.description.references Rahman, T. A. E., Oirdi, M. E., Gonzalez-Lamothe, R., & Bouarab, K. (2012). Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions, 25(12), 1584-1593. doi:10.1094/mpmi-07-12-0187-r es_ES
dc.description.references RASUL, S., DUBREUIL-MAURIZI, C., LAMOTTE, O., KOEN, E., POINSSOT, B., ALCARAZ, G., … JEANDROZ, S. (2012). Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant, Cell & Environment, 35(8), 1483-1499. doi:10.1111/j.1365-3040.2012.02505.x es_ES
dc.description.references Rasul, S., Wendehenne, D., & Jeandroz, S. (2012). Study of oligogalacturonides-triggered Nitric Oxide (NO) production provokes new questioning about the origin of NO biosynthesis in plants. Plant Signaling & Behavior, 7(8), 1031-1033. doi:10.4161/psb.20658 es_ES
dc.description.references RIBEIRO, D. M., DESIKAN, R., BRIGHT, J., CONFRARIA, A., HARRISON, J., HANCOCK, J. T., … WILSON, I. D. (2009). Differential requirement for NO during ABA-induced stomatal closure in turgid and wilted leaves. Plant, Cell & Environment, 32(1), 46-57. doi:10.1111/j.1365-3040.2008.01906.x es_ES
dc.description.references Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447 es_ES
dc.description.references ROELFSEMA, M. R. G., & HEDRICH, R. (2010). Making sense out of Ca2+signals: their role in regulating stomatal movements. Plant, Cell & Environment, 33(3), 305-321. doi:10.1111/j.1365-3040.2009.02075.x es_ES
dc.description.references Rosales, E. P., Iannone, M. F., Groppa, M. D., & Benavides, M. P. (2011). Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiology and Biochemistry, 49(2), 124-130. doi:10.1016/j.plaphy.2010.10.009 es_ES
dc.description.references Sánchez-Vallet, A., López, G., Ramos, B., Delgado-Cerezo, M., Riviere, M.-P., Llorente, F., … Molina, A. (2012). Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina. Plant Physiology, 160(4), 2109-2124. doi:10.1104/pp.112.200154 es_ES
dc.description.references Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424(3), 439-448. doi:10.1042/bj20091221 es_ES
dc.description.references Shi, S., Wang, G., Wang, Y., Zhang, L., & Zhang, L. (2005). Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide, 13(1), 1-9. doi:10.1016/j.niox.2005.04.006 es_ES
dc.description.references Siddiqui, M. H., Al-Whaibi, M. H., & Basalah, M. O. (2010). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248(3), 447-455. doi:10.1007/s00709-010-0206-9 es_ES
dc.description.references Simontacchi, M., García-Mata, C., Bartoli, C. G., Santa-María, G. E., & Lamattina, L. (2013). Nitric oxide as a key component in hormone-regulated processes. Plant Cell Reports, 32(6), 853-866. doi:10.1007/s00299-013-1434-1 es_ES
dc.description.references Simontacchi, M., Jasid, S., & Puntarulo, S. (s. f.). Enzymatic Sources of Nitric Oxide during Seed Germination. Nitric Oxide in Plant Growth, Development and Stress Physiology, 73-90. doi:10.1007/7089_2006_085 es_ES
dc.description.references SMART, C. M. (1994). Gene expression during leaf senescence. New Phytologist, 126(3), 419-448. doi:10.1111/j.1469-8137.1994.tb04243.x es_ES
dc.description.references Sokolovski, S., & Blatt, M. R. (2004). Nitric Oxide Block of Outward-Rectifying K+ Channels Indicates Direct Control by Protein Nitrosylation in Guard Cells. Plant Physiology, 136(4), 4275-4284. doi:10.1104/pp.104.050344 es_ES
dc.description.references TAN, J., WANG, C., XIANG, B., HAN, R., & GUO, Z. (2012). Hydrogen peroxide and nitric oxide mediated cold- and dehydration-inducedmyo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant, Cell & Environment, 36(2), 288-299. doi:10.1111/j.1365-3040.2012.02573.x es_ES
dc.description.references Tossi, V., Cassia, R., Bruzzone, S., Zocchi, E., & Lamattina, L. (2012). ABA says NO to UV-B: a universal response? Trends in Plant Science, 17(9), 510-517. doi:10.1016/j.tplants.2012.05.007 es_ES
dc.description.references Tossi, V., Lamattina, L., & Cassia, R. (2009). An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytologist, 181(4), 871-879. doi:10.1111/j.1469-8137.2008.02722.x es_ES
dc.description.references Vahisalu, T., Kollist, H., Wang, Y.-F., Nishimura, N., Chan, W.-Y., Valerio, G., … Kangasjärvi, J. (2008). SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 452(7186), 487-491. doi:10.1038/nature06608 es_ES
dc.description.references Vahisalu, T., Puzõrjova, I., Brosché, M., Valk, E., Lepiku, M., Moldau, H., … Kollist, H. (2010). Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal, 62(3), 442-453. doi:10.1111/j.1365-313x.2010.04159.x es_ES
dc.description.references Wang, P., Du, Y., Li, Y., Ren, D., & Song, C.-P. (2010). Hydrogen Peroxide–Mediated Activation of MAP Kinase 6 Modulates Nitric Oxide Biosynthesis and Signal Transduction in Arabidopsis. The Plant Cell, 22(9), 2981-2998. doi:10.1105/tpc.109.072959 es_ES
dc.description.references Wang, Y., Chen, C., Loake, G. J., & Chu, C. (2010). Nitric oxide: promoter or suppressor of programmed cell death? Protein & Cell, 1(2), 133-142. doi:10.1007/s13238-010-0018-x es_ES
dc.description.references Wang, Y., Feng, H., Qu, Y., Cheng, J., Zhao, Z., Zhang, M., … An, L. (2006). The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environmental and Experimental Botany, 57(1-2), 51-61. doi:10.1016/j.envexpbot.2005.04.009 es_ES
dc.description.references Wang, Y., Lin, A., Loake, G. J., & Chu, C. (2013). H2O2-induced Leaf Cell Death and the Crosstalk of Reactive Nitric/Oxygen SpeciesF. Journal of Integrative Plant Biology, 55(3), 202-208. doi:10.1111/jipb.12032 es_ES
dc.description.references Wimalasekera, R., Tebartz, F., & Scherer, G. F. E. (2011). Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science, 181(5), 593-603. doi:10.1016/j.plantsci.2011.04.002 es_ES
dc.description.references Xing, H., Tan, L., An, L., Zhao, Z., Wang, S., & Zhang, C. (2004). Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: Inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regulation, 42(1), 61-68. doi:10.1023/b:grow.0000014894.48683.1b es_ES
dc.description.references Yang, J., Zhang, J., Wang, Z., Zhu, Q., & Liu, L. (2002). Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta, 215(4), 645-652. doi:10.1007/s00425-002-0789-2 es_ES
dc.description.references YANG, J. C., ZHANG, J. H., WANG, Z. Q., ZHU, Q. S., & LIU, L. J. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell and Environment, 26(10), 1621-1631. doi:10.1046/j.1365-3040.2003.01081.x es_ES
dc.description.references Yun, B.-W., Feechan, A., Yin, M., Saidi, N. B. B., Le Bihan, T., Yu, M., … Loake, G. J. (2011). S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature, 478(7368), 264-268. doi:10.1038/nature10427 es_ES
dc.description.references Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., … Durner, J. (2004). From The Cover: Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proceedings of the National Academy of Sciences, 101(44), 15811-15816. doi:10.1073/pnas.0404536101 es_ES
dc.description.references Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X., & Tan, M. (2007). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 175(1), 36-50. doi:10.1111/j.1469-8137.2007.02071.x es_ES
dc.description.references Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010). Nitric Oxide Mediates Brassinosteroid-Induced ABA Biosynthesis Involved in Oxidative Stress Tolerance in Maize Leaves. Plant and Cell Physiology, 52(1), 181-192. doi:10.1093/pcp/pcq187 es_ES
dc.description.references ZHANG, Y., TAN, J., GUO, Z., LU, S., HE, S., SHU, W., & ZHOU, B. (2009). Increased abscisic acid levels in transgenic tobacco over-expressing 9cis-epoxycarotenoid dioxygenase influence H2O2and NO production and antioxidant defences. Plant, Cell & Environment, 32(5), 509-519. doi:10.1111/j.1365-3040.2009.01945.x es_ES
dc.description.references Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545-555. doi:10.1007/s00425-006-0242-z es_ES
dc.description.references Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B., & Zhang, L. (2004). Nitric Oxide Functions as a Signal in Salt Resistance in the Calluses from Two Ecotypes of Reed. Plant Physiology, 134(2), 849-857. doi:10.1104/pp.103.030023 es_ES
dc.description.references Zheng, Y., Schumaker, K. S., & Guo, Y. (2012). Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 109(31), 12822-12827. doi:10.1073/pnas.1202630109 es_ES
dc.description.references Zhu, J.-K. (2002). SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 53(1), 247-273. doi:10.1146/annurev.arplant.53.091401.143329 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem