- -

Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

Show full item record

Cocaliadis-Caisson, MF.; Fernandez-Munoz, R.; Pons Puig, C.; Orzáez Calatayud, DV.; Granell Richart, A. (2014). Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?. Journal of Experimental Botany. 65(16):4589-4598. doi:10.1093/jxb/eru165

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79375

Files in this item

Item Metadata

Title: Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?
Author: Cocaliadis-Caisson, María Florencia Fernandez-Munoz, Rafael Pons Puig, Clara Orzáez Calatayud, Diego Vicente Granell Richart, Antonio
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
[EN] Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported ...[+]
Subjects: Chloroplast , Fruit , Oxidative stress , Plastid , Solanum , Sugars , Tomato
Copyrigths: Reserva de todos los derechos
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/eru165
Oxford University Press (OUP)
Publisher version: http://dx.doi.org/10.1093/jxb/eru165
Project ID:
EU/COST Action 1106
The research of AG in funded by the Spanish Ministry of Science and Education and FECYT (ESPSOL and CALITOM projects) and networking activities supported by COST1106. We would like to thank Enrique Lopez-Juez for critical ...[+]
Type: Artículo


Araújo, W. L., Nunes-Nesi, A., Osorio, S., Usadel, B., Fuentes, D., Nagy, R., … Fernie, A. R. (2011). Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid–Mediated Effect on Stomatal Aperture. The Plant Cell, 23(2), 600-627. doi:10.1105/tpc.110.081224

Azari, R., Reuveni, M., Evenor, D., Nahon, S., Shlomo, H., Chen, L., & Levin, I. (2010). Overexpression of UV-DAMAGED DNA BINDING PROTEIN 1 links plant development and phytonutrient accumulation in high pigment-1 tomato. Journal of Experimental Botany, 61(13), 3627-3637. doi:10.1093/jxb/erq176

Baldet, P., Hernould, M., Laporte, F., Mounet, F., Just, D., Mouras, A., … Rothan, C. (2006). The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. Journal of Experimental Botany, 57(4), 961-970. doi:10.1093/jxb/erj082 [+]
Araújo, W. L., Nunes-Nesi, A., Osorio, S., Usadel, B., Fuentes, D., Nagy, R., … Fernie, A. R. (2011). Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid–Mediated Effect on Stomatal Aperture. The Plant Cell, 23(2), 600-627. doi:10.1105/tpc.110.081224

Azari, R., Reuveni, M., Evenor, D., Nahon, S., Shlomo, H., Chen, L., & Levin, I. (2010). Overexpression of UV-DAMAGED DNA BINDING PROTEIN 1 links plant development and phytonutrient accumulation in high pigment-1 tomato. Journal of Experimental Botany, 61(13), 3627-3637. doi:10.1093/jxb/erq176

Baldet, P., Hernould, M., Laporte, F., Mounet, F., Just, D., Mouras, A., … Rothan, C. (2006). The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. Journal of Experimental Botany, 57(4), 961-970. doi:10.1093/jxb/erj082

Barry, C. S., Aldridge, G. M., Herzog, G., Ma, Q., McQuinn, R. P., Hirschberg, J., & Giovannoni, J. J. (2012). Altered Chloroplast Development and Delayed Fruit Ripening Caused by Mutations in a Zinc Metalloprotease at the lutescent2 Locus of Tomato. Plant Physiology, 159(3), 1086-1098. doi:10.1104/pp.112.197483

Barry, C. S., McQuinn, R. P., Chung, M.-Y., Besuden, A., & Giovannoni, J. J. (2008). Amino Acid Substitutions in Homologs of the STAY-GREEN Protein Are Responsible for the green-flesh and chlorophyll retainer Mutations of Tomato and Pepper. Plant Physiology, 147(1), 179-187. doi:10.1104/pp.108.118430

Barsan, C., Sanchez-Bel, P., Rombaldi, C., Egea, I., Rossignol, M., Kuntz, M., … Pech, J.-C. (2010). Characteristics of the tomato chromoplast revealed by proteomic analysis. Journal of Experimental Botany, 61(9), 2413-2431. doi:10.1093/jxb/erq070

Barsan, C., Zouine, M., Maza, E., Bian, W., Egea, I., Rossignol, M., … Pech, J.-C. (2012). Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components. Plant Physiology, 160(2), 708-725. doi:10.1104/pp.112.203679

BERTIN, N. (2003). Do Genetic Make-up and Growth Manipulation Affect Tomato Fruit Size by Cell Number, or Cell Size and DNA Endoreduplication? Annals of Botany, 92(3), 415-424. doi:10.1093/aob/mcg146

Bino, R. J., De Vos, C. H. R., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., … Levin, I. (2005). The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytologist, 166(2), 427-438. doi:10.1111/j.1469-8137.2005.01362.x

BLANKE, M. M., & LENZ, F. (1989). Fruit photosynthesis. Plant, Cell and Environment, 12(1), 31-46. doi:10.1111/j.1365-3040.1989.tb01914.x

BOHK, G. W., & SCOTT, D. H. (1945). A SECOND GENE FOR UNIFORM UNRIPE FRUIT COLOR IN THE TOMATO. Journal of Heredity, 36(6), 169-172. doi:10.1093/oxfordjournals.jhered.a105489

Borovsky, Y., & Paran, I. (2008). Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theoretical and Applied Genetics, 117(2), 235-240. doi:10.1007/s00122-008-0768-5

Buker, M., Schunemann, D., & Borchert, S. (1998). Enzymic properties and capacities of developing tomato (Lycopersicon esculentum L.) fruit plastids. Journal of Experimental Botany, 49(321), 681-691. doi:10.1093/jxb/49.321.681

Burgess, D. G., & Taylor, W. C. (1987). Chloroplast photooxidation affects the accumulation of cytosolic mRNAs encoding chloroplast proteins in maize. Planta, 170(4), 520-527. doi:10.1007/bf00402986

Burstin, J., Marget, P., Huart, M., Moessner, A., Mangin, B., Duchene, C., … Duc, G. (2007). Developmental Genes Have Pleiotropic Effects on Plant Morphology and Source Capacity, Eventually Impacting on Seed Protein Content and Productivity in Pea. Plant Physiology, 144(2), 768-781. doi:10.1104/pp.107.096966

Carrara, S., Pardossi, A., Soldatini, G. F., Tognoni, F., & Guidi, L. (2001). Photosynthetica, 39(1), 75-78. doi:10.1023/a:1012495903093

Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., … Fernie, A. R. (2006). Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 142(4), 1380-1396. doi:10.1104/pp.106.088534

Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.x

Chen, G., Bi, Y. R., & Li, N. (2004). EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. The Plant Journal, 41(3), 364-375. doi:10.1111/j.1365-313x.2004.02308.x

Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40(6), 800-804. doi:10.1038/ng.144

Davies, J. W., & Cocking, E. C. (1965). Changes in carbohydrates, proteins and nucleic acids during cellular development in tomato fruit locule tissue. Planta, 67(3), 242-253. doi:10.1007/bf00385654

Davuluri, G. R., van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., … Bowler, C. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23(7), 890-895. doi:10.1038/nbt1108

Davuluri, G. R., Tuinen, A., Mustilli, A. C., Manfredonia, A., Newman, R., Burgess, D., … Bowler, C. (2004). Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post‐transcriptional gene silencing. The Plant Journal, 40(3), 344-354. doi:10.1111/j.1365-313x.2004.02218.x

Do, P. T., Prudent, M., Sulpice, R., Causse, M., & Fernie, A. R. (2010). The Influence of Fruit Load on the Tomato Pericarp Metabolome in a Solanum chmielewskii Introgression Line Population. Plant Physiology, 154(3), 1128-1142. doi:10.1104/pp.110.163030

Egea, I., Barsan, C., Bian, W., Purgatto, E., Latche, A., Chervin, C., … Pech, J.-C. (2010). Chromoplast Differentiation: Current Status and Perspectives. Plant and Cell Physiology, 51(10), 1601-1611. doi:10.1093/pcp/pcq136

Enfissi, E. M. A., Barneche, F., Ahmed, I., Lichtlé, C., Gerrish, C., McQuinn, R. P., … Fraser, P. D. (2010). Integrative Transcript and Metabolite Analysis of Nutritionally Enhanced DE-ETIOLATED1 Downregulated Tomato Fruit. The Plant Cell, 22(4), 1190-1215. doi:10.1105/tpc.110.073866

Fitter, D. W., Martin, D. J., Copley, M. J., Scotland, R. W., & Langdale, J. A. (2002). GLKgene pairs regulate chloroplast development in diverse plant species. The Plant Journal, 31(6), 713-727. doi:10.1046/j.1365-313x.2002.01390.x

Francis, D. M., Barringer, S. A., & Whitmoyer, R. E. (2000). Ultrastructural Characterization of Yellow Shoulder Disorder in a Uniform Ripening Tomato Genotype. HortScience, 35(6), 1114-1117. doi:10.21273/hortsci.35.6.1114

Frary, A. (2000). fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85

Fridman, E. (2004). Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 305(5691), 1786-1789. doi:10.1126/science.1101666

Fridman, E., Pleban, T., & Zamir, D. (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 97(9), 4718-4723. doi:10.1073/pnas.97.9.4718

Galpaz, N., Wang, Q., Menda, N., Zamir, D., & Hirschberg, J. (2008). Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal, 53(5), 717-730. doi:10.1111/j.1365-313x.2007.03362.x

Gautier, H. (2001). Modulation of Competition between Fruits and Leaves by Flower Pruning and Water Fogging, and Consequences on Tomato Leaf and Fruit Growth. Annals of Botany, 88(4), 645-652. doi:10.1006/anbo.2001.1518

Giliberto, L., Perrotta, G., Pallara, P., Weller, J. L., Fraser, P. D., Bramley, P. M., … Giuliano, G. (2004). Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content. Plant Physiology, 137(1), 199-208. doi:10.1104/pp.104.051987

Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439

Hackel, A., Schauer, N., Carrari, F., Fernie, A. R., Grimm, B., & Kühn, C. (2006). Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal, 45(2), 180-192. doi:10.1111/j.1365-313x.2005.02572.x

Hetherington, S. E., Smillie, R. M., & Davies, W. J. (1998). Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 49(324), 1173-1181. doi:10.1093/jxb/49.324.1173

Heuvelink, E. (1997). Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae, 69(1-2), 51-59. doi:10.1016/s0304-4238(96)00993-4

Isaacson, T., Ronen, G., Zamir, D., & Hirschberg, J. (2002). Cloning of tangerine from Tomato Reveals a Carotenoid Isomerase Essential for the Production of β-Carotene and Xanthophylls in Plants. The Plant Cell, 14(2), 333-342. doi:10.1105/tpc.010303

Jarvis, P., & López-Juez, E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology, 14(12), 787-802. doi:10.1038/nrm3702

Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., & Mullineaux, P. (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 214(5), 751-758. doi:10.1007/s004250100667

Jones, B., Frasse, P., Olmos, E., Zegzouti, H., Li, Z. G., Latché, A., … Bouzayen, M. (2002). Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. The Plant Journal, 32(4), 603-613. doi:10.1046/j.1365-313x.2002.01450.x

Kahlau, S., & Bock, R. (2008). Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein. The Plant Cell, 20(4), 856-874. doi:10.1105/tpc.107.055202

Kawata, E. E., & Cheung, A. Y. (1990). Molecular analysis of an aurea photosynthetic mutant (Su/Su) in tobacco: LHCP depletion leads to pleiotropic mutant phenotypes. The EMBO Journal, 9(12), 4197-4203. doi:10.1002/j.1460-2075.1990.tb07644.x

Kemp, G. A., & Nonnecke, I. L. (1960). DIFFERENCES IN INTENSITY OF UNRIPE FRUIT COLOUR IN THE TOMATO. Canadian Journal of Plant Science, 40(2), 306-309. doi:10.4141/cjps60-041

Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507

Kobayashi, K., Baba, S., Obayashi, T., Sato, M., Toyooka, K., Keränen, M., … Masuda, T. (2012). Regulation of Root Greening by Light and Auxin/Cytokinin Signaling in Arabidopsis. The Plant Cell, 24(3), 1081-1095. doi:10.1105/tpc.111.092254

Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., … Levin, I. (2007). Transcriptional Profiling of high pigment-2dg Tomato Mutant Links Early Fruit Plastid Biogenesis with Its Overproduction of Phytonutrients. Plant Physiology, 145(2), 389-401. doi:10.1104/pp.107.102962

Laval-Martin, D., Farineau, J., & Diamond, J. (1977). Light versus Dark Carbon Metabolism in Cherry Tomato Fruits. Plant Physiology, 60(6), 872-876. doi:10.1104/pp.60.6.872

Lemaire-Chamley, M., Petit, J., Garcia, V., Just, D., Baldet, P., Germain, V., … Rothan, C. (2005). Changes in Transcriptional Profiles Are Associated with Early Fruit Tissue Specialization in Tomato. Plant Physiology, 139(2), 750-769. doi:10.1104/pp.105.063719

Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., … Giovannoni, J. (2004). Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences, 101(26), 9897-9902. doi:10.1073/pnas.0400935101

Livne, A., & Gepstein, S. (1988). Abundance of the Major Chloroplast Polypeptides during Development and Ripening of Tomato Fruits. Plant Physiology, 87(1), 239-243. doi:10.1104/pp.87.1.239

Lytovchenko, A., Eickmeier, I., Pons, C., Osorio, S., Szecowka, M., Lehmberg, K., … Fernie, A. R. (2011). Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development. Plant Physiology, 157(4), 1650-1663. doi:10.1104/pp.111.186874

Manzara, T., Carrasco, P., & Gruissem, W. (1993). Developmental and organ-specific changes in DNA-protein interactions in the tomato rbcS1, rbcS2 and rbcS3A promoter regions. Plant Molecular Biology, 21(1), 69-88. doi:10.1007/bf00039619

Martineau, B., Houck, C. M., Sheehy, R. E., & Hiatt, W. R. (1994). Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. The Plant Journal, 5(1), 11-19. doi:10.1046/j.1365-313x.1994.5010011.x

Mehta, R. A., Cassol, T., Li, N., Ali, N., Handa, A. K., & Mattoo, A. K. (2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotechnology, 20(6), 613-618. doi:10.1038/nbt0602-613

Mondal, K., Sharma, N. S., Malhotra, S. P., Dhawan, K., & Singh, R. (2004). Antioxidant Systems in Ripening Tomato Fruits. Biologia Plantarum, 48(1), 49-53. doi:10.1023/b:biop.0000024274.43874.5b

Murchie, E. H., & Niyogi, K. K. (2010). Manipulation of Photoprotection to Improve Plant Photosynthesis. Plant Physiology, 155(1), 86-92. doi:10.1104/pp.110.168831

Mustilli, A. C., Fenzi, F., Ciliento, R., Alfano, F., & Bowler, C. (1999). Phenotype of the Tomato high pigment-2 Mutant Is Caused by a Mutation in the Tomato Homolog of DEETIOLATED1. The Plant Cell, 11(2), 145-157. doi:10.1105/tpc.11.2.145

Nashilevitz, S., Melamed-Bessudo, C., Izkovich, Y., Rogachev, I., Osorio, S., Itkin, M., … Aharoni, A. (2010). An Orange Ripening Mutant Links Plastid NAD(P)H Dehydrogenase Complex Activity to Central and Specialized Metabolism during Tomato Fruit Maturation. The Plant Cell, 22(6), 1977-1997. doi:10.1105/tpc.110.074716

Nguyen, C. V., Vrebalov, J. T., Gapper, N. E., Zheng, Y., Zhong, S., Fei, Z., & Giovannoni, J. J. (2014). Tomato GOLDEN2-LIKE Transcription Factors Reveal Molecular Gradients That Function during Fruit Development and Ripening. The Plant Cell, 26(2), 585-601. doi:10.1105/tpc.113.118794

Nunes-Nesi, A., Araújo, W. L., & Fernie, A. R. (2010). Targeting Mitochondrial Metabolism and Machinery as a Means to Enhance Photosynthesis. Plant Physiology, 155(1), 101-107. doi:10.1104/pp.110.163816

Obiadalla-Ali, H., Fernie, A., Lytovchenko, A., Kossmann, J., & Lloyd, J. (2004). Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta, 219(3). doi:10.1007/s00425-004-1257-y

Pan, Y., Bradley, G., Pyke, K., Ball, G., Lu, C., Fray, R., … Seymour, G. B. (2013). Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits. Plant Physiology, 161(3), 1476-1485. doi:10.1104/pp.112.212654

Peet, M. M. (1992). Fruit Cracking in Tomato. HortTechnology, 2(2), 216-223. doi:10.21273/horttech.2.2.216

Pfannschmidt, T., Nilsson, A., & Allen, J. F. (1999). Photosynthetic control of chloroplast gene expression. Nature, 397(6720), 625-628. doi:10.1038/17624

Piechulla, B., Glick, R. E., Bahl, H., Melis, A., & Gruissem, W. (1987). Changes in Photosynthetic Capacity and Photosynthetic Protein Pattern during Tomato Fruit Ripening. Plant Physiology, 84(3), 911-917. doi:10.1104/pp.84.3.911

Piechulla, B., & Gruissem, W. (1987). Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. The EMBO Journal, 6(12), 3593-3599. doi:10.1002/j.1460-2075.1987.tb02690.x

Piechulla, B., Pichersky, E., Cashmore, A. R., & Gruissem, W. (1986). Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Molecular Biology, 7(5), 367-376. doi:10.1007/bf00032566

Powell, A. L. T., Kalamaki, M. S., Kurien, P. A., Gurrieri, S., & Bennett, A. B. (2003). Simultaneous Transgenic Suppression of LePG and LeExp1 Influences Fruit Texture and Juice Viscosity in a Fresh Market Tomato Variety. Journal of Agricultural and Food Chemistry, 51(25), 7450-7455. doi:10.1021/jf034165d

Powell, A. L. T., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., … Bennett, A. B. (2012). Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 336(6089), 1711-1715. doi:10.1126/science.1222218

Rohrmann, J., Tohge, T., Alba, R., Osorio, S., Caldana, C., McQuinn, R., … Fernie, A. R. (2011). Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. The Plant Journal, 68(6), 999-1013. doi:10.1111/j.1365-313x.2011.04750.x

Sagar, M., Chervin, C., Mila, I., Hao, Y., Roustan, J.-P., Benichou, M., … Zouine, M. (2013). SlARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development. Plant Physiology, 161(3), 1362-1374. doi:10.1104/pp.113.213843

Schaffer, A. A., & Petreikov, M. (1997). Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation. Plant Physiology, 113(3), 739-746. doi:10.1104/pp.113.3.739

Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192

Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779-782. doi:10.1038/nature03145

Smith, D. L., Abbott, J. A., & Gross, K. C. (2002). Down-Regulation of Tomato β-Galactosidase 4 Results in Decreased Fruit Softening. Plant Physiology, 129(4), 1755-1762. doi:10.1104/pp.011025

Steinhauser, M.-C., Steinhauser, D., Koehl, K., Carrari, F., Gibon, Y., Fernie, A. R., & Stitt, M. (2010). Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii. Plant Physiology, 153(1), 80-98. doi:10.1104/pp.110.154336

Sugita, M., & Gruissem, W. (1987). Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proceedings of the National Academy of Sciences, 84(20), 7104-7108. doi:10.1073/pnas.84.20.7104

Tanaka, A., Fujita, K., & Kikuchi, K. (1974). Nutrio-physiological studies on the tomato plant III. Photosynthetic rate of individual leaves in relation to the dry matter production of plants. Soil Science and Plant Nutrition, 20(2), 173-183. doi:10.1080/00380768.1974.10433240

Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830

Wanner, L. A., & Gruissem, W. (1991). Expression dynamics of the tomato rbcS gene family during development. The Plant Cell, 3(12), 1289-1303. doi:10.1105/tpc.3.12.1289

Waters, M. T., & Langdale, J. A. (2009). The making of a chloroplast. The EMBO Journal, 28(19), 2861-2873. doi:10.1038/emboj.2009.264

Waters, M. T., Moylan, E. C., & Langdale, J. A. (2008). GLK transcription factors regulate chloroplast development in a cell-autonomous manner. The Plant Journal, 56(3), 432-444. doi:10.1111/j.1365-313x.2008.03616.x

Waters, M. T., Wang, P., Korkaric, M., Capper, R. G., Saunders, N. J., & Langdale, J. A. (2009). GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in Arabidopsis. The Plant Cell, 21(4), 1109-1128. doi:10.1105/tpc.108.065250

Yen, H. C., Shelton, B. A., Howard, L. R., Lee, S., Vrebalov, J., & Giovannoni, J. J. (1997). The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theoretical and Applied Genetics, 95(7), 1069-1079. doi:10.1007/s001220050664

Yin, Y.-G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., … Matsukura, C. (2009). Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61(2), 563-574. doi:10.1093/jxb/erp333

Zanor, M. I., Osorio, S., Nunes-Nesi, A., Carrari, F., Lohse, M., Usadel, B., … Fernie, A. R. (2009). RNA Interference of LIN5 in Tomato Confirms Its Role in Controlling Brix Content, Uncovers the Influence of Sugars on the Levels of Fruit Hormones, and Demonstrates the Importance of Sucrose Cleavage for Normal Fruit Development and Fertility. Plant Physiology, 150(3), 1204-1218. doi:10.1104/pp.109.136598

Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.072




This item appears in the following Collection(s)

Show full item record