- -

Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cocaliadis-Caisson, María Florencia es_ES
dc.contributor.author Fernandez-Munoz, Rafael es_ES
dc.contributor.author Pons Puig, Clara es_ES
dc.contributor.author Orzáez Calatayud, Diego Vicente es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2017-04-03T11:47:00Z
dc.date.available 2017-04-03T11:47:00Z
dc.date.issued 2014-08
dc.identifier.issn 0022-0957
dc.identifier.uri http://hdl.handle.net/10251/79375
dc.description.abstract [EN] Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening. es_ES
dc.description.sponsorship The research of AG in funded by the Spanish Ministry of Science and Education and FECYT (ESPSOL and CALITOM projects) and networking activities supported by COST1106. We would like to thank Enrique Lopez-Juez for critical reading of the manuscript.
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chloroplast es_ES
dc.subject Fruit es_ES
dc.subject Oxidative stress es_ES
dc.subject Plastid es_ES
dc.subject Solanum es_ES
dc.subject Sugars es_ES
dc.subject Tomato es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/eru165
dc.relation.projectID info:eu-repo/grantAgreement/COST//FA1106/EU/An integrated systems approach to determine the developmental mechanisms controlling fleshy fruit quality in tomato and grapevine/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Cocaliadis-Caisson, MF.; Fernandez-Munoz, R.; Pons Puig, C.; Orzáez Calatayud, DV.; Granell Richart, A. (2014). Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?. Journal of Experimental Botany. 65(16):4589-4598. doi:10.1093/jxb/eru165 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/jxb/eru165 es_ES
dc.description.upvformatpinicio 4589 es_ES
dc.description.upvformatpfin 4598 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 16 es_ES
dc.relation.senia 284260 es_ES
dc.identifier.pmid 24723405
dc.contributor.funder European Commission
dc.contributor.funder European Cooperation in Science and Technology
dc.description.references Araújo, W. L., Nunes-Nesi, A., Osorio, S., Usadel, B., Fuentes, D., Nagy, R., … Fernie, A. R. (2011). Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid–Mediated Effect on Stomatal Aperture. The Plant Cell, 23(2), 600-627. doi:10.1105/tpc.110.081224 es_ES
dc.description.references Azari, R., Reuveni, M., Evenor, D., Nahon, S., Shlomo, H., Chen, L., & Levin, I. (2010). Overexpression of UV-DAMAGED DNA BINDING PROTEIN 1 links plant development and phytonutrient accumulation in high pigment-1 tomato. Journal of Experimental Botany, 61(13), 3627-3637. doi:10.1093/jxb/erq176 es_ES
dc.description.references Baldet, P., Hernould, M., Laporte, F., Mounet, F., Just, D., Mouras, A., … Rothan, C. (2006). The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. Journal of Experimental Botany, 57(4), 961-970. doi:10.1093/jxb/erj082 es_ES
dc.description.references Barry, C. S., Aldridge, G. M., Herzog, G., Ma, Q., McQuinn, R. P., Hirschberg, J., & Giovannoni, J. J. (2012). Altered Chloroplast Development and Delayed Fruit Ripening Caused by Mutations in a Zinc Metalloprotease at the lutescent2 Locus of Tomato. Plant Physiology, 159(3), 1086-1098. doi:10.1104/pp.112.197483 es_ES
dc.description.references Barry, C. S., McQuinn, R. P., Chung, M.-Y., Besuden, A., & Giovannoni, J. J. (2008). Amino Acid Substitutions in Homologs of the STAY-GREEN Protein Are Responsible for the green-flesh and chlorophyll retainer Mutations of Tomato and Pepper. Plant Physiology, 147(1), 179-187. doi:10.1104/pp.108.118430 es_ES
dc.description.references Barsan, C., Sanchez-Bel, P., Rombaldi, C., Egea, I., Rossignol, M., Kuntz, M., … Pech, J.-C. (2010). Characteristics of the tomato chromoplast revealed by proteomic analysis. Journal of Experimental Botany, 61(9), 2413-2431. doi:10.1093/jxb/erq070 es_ES
dc.description.references Barsan, C., Zouine, M., Maza, E., Bian, W., Egea, I., Rossignol, M., … Pech, J.-C. (2012). Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components. Plant Physiology, 160(2), 708-725. doi:10.1104/pp.112.203679 es_ES
dc.description.references BERTIN, N. (2003). Do Genetic Make-up and Growth Manipulation Affect Tomato Fruit Size by Cell Number, or Cell Size and DNA Endoreduplication? Annals of Botany, 92(3), 415-424. doi:10.1093/aob/mcg146 es_ES
dc.description.references Bino, R. J., De Vos, C. H. R., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., … Levin, I. (2005). The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytologist, 166(2), 427-438. doi:10.1111/j.1469-8137.2005.01362.x es_ES
dc.description.references BLANKE, M. M., & LENZ, F. (1989). Fruit photosynthesis. Plant, Cell and Environment, 12(1), 31-46. doi:10.1111/j.1365-3040.1989.tb01914.x es_ES
dc.description.references BOHK, G. W., & SCOTT, D. H. (1945). A SECOND GENE FOR UNIFORM UNRIPE FRUIT COLOR IN THE TOMATO. Journal of Heredity, 36(6), 169-172. doi:10.1093/oxfordjournals.jhered.a105489 es_ES
dc.description.references Borovsky, Y., & Paran, I. (2008). Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theoretical and Applied Genetics, 117(2), 235-240. doi:10.1007/s00122-008-0768-5 es_ES
dc.description.references Buker, M., Schunemann, D., & Borchert, S. (1998). Enzymic properties and capacities of developing tomato (Lycopersicon esculentum L.) fruit plastids. Journal of Experimental Botany, 49(321), 681-691. doi:10.1093/jxb/49.321.681 es_ES
dc.description.references Burgess, D. G., & Taylor, W. C. (1987). Chloroplast photooxidation affects the accumulation of cytosolic mRNAs encoding chloroplast proteins in maize. Planta, 170(4), 520-527. doi:10.1007/bf00402986 es_ES
dc.description.references Burstin, J., Marget, P., Huart, M., Moessner, A., Mangin, B., Duchene, C., … Duc, G. (2007). Developmental Genes Have Pleiotropic Effects on Plant Morphology and Source Capacity, Eventually Impacting on Seed Protein Content and Productivity in Pea. Plant Physiology, 144(2), 768-781. doi:10.1104/pp.107.096966 es_ES
dc.description.references Carrara, S., Pardossi, A., Soldatini, G. F., Tognoni, F., & Guidi, L. (2001). Photosynthetica, 39(1), 75-78. doi:10.1023/a:1012495903093 es_ES
dc.description.references Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., … Fernie, A. R. (2006). Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 142(4), 1380-1396. doi:10.1104/pp.106.088534 es_ES
dc.description.references Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.x es_ES
dc.description.references Chen, G., Bi, Y. R., & Li, N. (2004). EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. The Plant Journal, 41(3), 364-375. doi:10.1111/j.1365-313x.2004.02308.x es_ES
dc.description.references Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40(6), 800-804. doi:10.1038/ng.144 es_ES
dc.description.references Davies, J. W., & Cocking, E. C. (1965). Changes in carbohydrates, proteins and nucleic acids during cellular development in tomato fruit locule tissue. Planta, 67(3), 242-253. doi:10.1007/bf00385654 es_ES
dc.description.references Davuluri, G. R., van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., … Bowler, C. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23(7), 890-895. doi:10.1038/nbt1108 es_ES
dc.description.references Davuluri, G. R., Tuinen, A., Mustilli, A. C., Manfredonia, A., Newman, R., Burgess, D., … Bowler, C. (2004). Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post‐transcriptional gene silencing. The Plant Journal, 40(3), 344-354. doi:10.1111/j.1365-313x.2004.02218.x es_ES
dc.description.references Do, P. T., Prudent, M., Sulpice, R., Causse, M., & Fernie, A. R. (2010). The Influence of Fruit Load on the Tomato Pericarp Metabolome in a Solanum chmielewskii Introgression Line Population. Plant Physiology, 154(3), 1128-1142. doi:10.1104/pp.110.163030 es_ES
dc.description.references Egea, I., Barsan, C., Bian, W., Purgatto, E., Latche, A., Chervin, C., … Pech, J.-C. (2010). Chromoplast Differentiation: Current Status and Perspectives. Plant and Cell Physiology, 51(10), 1601-1611. doi:10.1093/pcp/pcq136 es_ES
dc.description.references Enfissi, E. M. A., Barneche, F., Ahmed, I., Lichtlé, C., Gerrish, C., McQuinn, R. P., … Fraser, P. D. (2010). Integrative Transcript and Metabolite Analysis of Nutritionally Enhanced DE-ETIOLATED1 Downregulated Tomato Fruit. The Plant Cell, 22(4), 1190-1215. doi:10.1105/tpc.110.073866 es_ES
dc.description.references Fitter, D. W., Martin, D. J., Copley, M. J., Scotland, R. W., & Langdale, J. A. (2002). GLKgene pairs regulate chloroplast development in diverse plant species. The Plant Journal, 31(6), 713-727. doi:10.1046/j.1365-313x.2002.01390.x es_ES
dc.description.references Francis, D. M., Barringer, S. A., & Whitmoyer, R. E. (2000). Ultrastructural Characterization of Yellow Shoulder Disorder in a Uniform Ripening Tomato Genotype. HortScience, 35(6), 1114-1117. doi:10.21273/hortsci.35.6.1114 es_ES
dc.description.references Frary, A. (2000). fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85 es_ES
dc.description.references Fridman, E. (2004). Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 305(5691), 1786-1789. doi:10.1126/science.1101666 es_ES
dc.description.references Fridman, E., Pleban, T., & Zamir, D. (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 97(9), 4718-4723. doi:10.1073/pnas.97.9.4718 es_ES
dc.description.references Galpaz, N., Wang, Q., Menda, N., Zamir, D., & Hirschberg, J. (2008). Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal, 53(5), 717-730. doi:10.1111/j.1365-313x.2007.03362.x es_ES
dc.description.references Gautier, H. (2001). Modulation of Competition between Fruits and Leaves by Flower Pruning and Water Fogging, and Consequences on Tomato Leaf and Fruit Growth. Annals of Botany, 88(4), 645-652. doi:10.1006/anbo.2001.1518 es_ES
dc.description.references Giliberto, L., Perrotta, G., Pallara, P., Weller, J. L., Fraser, P. D., Bramley, P. M., … Giuliano, G. (2004). Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content. Plant Physiology, 137(1), 199-208. doi:10.1104/pp.104.051987 es_ES
dc.description.references Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439 es_ES
dc.description.references Hackel, A., Schauer, N., Carrari, F., Fernie, A. R., Grimm, B., & Kühn, C. (2006). Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal, 45(2), 180-192. doi:10.1111/j.1365-313x.2005.02572.x es_ES
dc.description.references Hetherington, S. E., Smillie, R. M., & Davies, W. J. (1998). Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 49(324), 1173-1181. doi:10.1093/jxb/49.324.1173 es_ES
dc.description.references Heuvelink, E. (1997). Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae, 69(1-2), 51-59. doi:10.1016/s0304-4238(96)00993-4 es_ES
dc.description.references Isaacson, T., Ronen, G., Zamir, D., & Hirschberg, J. (2002). Cloning of tangerine from Tomato Reveals a Carotenoid Isomerase Essential for the Production of β-Carotene and Xanthophylls in Plants. The Plant Cell, 14(2), 333-342. doi:10.1105/tpc.010303 es_ES
dc.description.references Jarvis, P., & López-Juez, E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology, 14(12), 787-802. doi:10.1038/nrm3702 es_ES
dc.description.references Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., & Mullineaux, P. (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 214(5), 751-758. doi:10.1007/s004250100667 es_ES
dc.description.references Jones, B., Frasse, P., Olmos, E., Zegzouti, H., Li, Z. G., Latché, A., … Bouzayen, M. (2002). Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. The Plant Journal, 32(4), 603-613. doi:10.1046/j.1365-313x.2002.01450.x es_ES
dc.description.references Kahlau, S., & Bock, R. (2008). Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein. The Plant Cell, 20(4), 856-874. doi:10.1105/tpc.107.055202 es_ES
dc.description.references Kawata, E. E., & Cheung, A. Y. (1990). Molecular analysis of an aurea photosynthetic mutant (Su/Su) in tobacco: LHCP depletion leads to pleiotropic mutant phenotypes. The EMBO Journal, 9(12), 4197-4203. doi:10.1002/j.1460-2075.1990.tb07644.x es_ES
dc.description.references Kemp, G. A., & Nonnecke, I. L. (1960). DIFFERENCES IN INTENSITY OF UNRIPE FRUIT COLOUR IN THE TOMATO. Canadian Journal of Plant Science, 40(2), 306-309. doi:10.4141/cjps60-041 es_ES
dc.description.references Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 es_ES
dc.description.references Kobayashi, K., Baba, S., Obayashi, T., Sato, M., Toyooka, K., Keränen, M., … Masuda, T. (2012). Regulation of Root Greening by Light and Auxin/Cytokinin Signaling in Arabidopsis. The Plant Cell, 24(3), 1081-1095. doi:10.1105/tpc.111.092254 es_ES
dc.description.references Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., … Levin, I. (2007). Transcriptional Profiling of high pigment-2dg Tomato Mutant Links Early Fruit Plastid Biogenesis with Its Overproduction of Phytonutrients. Plant Physiology, 145(2), 389-401. doi:10.1104/pp.107.102962 es_ES
dc.description.references Laval-Martin, D., Farineau, J., & Diamond, J. (1977). Light versus Dark Carbon Metabolism in Cherry Tomato Fruits. Plant Physiology, 60(6), 872-876. doi:10.1104/pp.60.6.872 es_ES
dc.description.references Lemaire-Chamley, M., Petit, J., Garcia, V., Just, D., Baldet, P., Germain, V., … Rothan, C. (2005). Changes in Transcriptional Profiles Are Associated with Early Fruit Tissue Specialization in Tomato. Plant Physiology, 139(2), 750-769. doi:10.1104/pp.105.063719 es_ES
dc.description.references Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., … Giovannoni, J. (2004). Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences, 101(26), 9897-9902. doi:10.1073/pnas.0400935101 es_ES
dc.description.references Livne, A., & Gepstein, S. (1988). Abundance of the Major Chloroplast Polypeptides during Development and Ripening of Tomato Fruits. Plant Physiology, 87(1), 239-243. doi:10.1104/pp.87.1.239 es_ES
dc.description.references Lytovchenko, A., Eickmeier, I., Pons, C., Osorio, S., Szecowka, M., Lehmberg, K., … Fernie, A. R. (2011). Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development. Plant Physiology, 157(4), 1650-1663. doi:10.1104/pp.111.186874 es_ES
dc.description.references Manzara, T., Carrasco, P., & Gruissem, W. (1993). Developmental and organ-specific changes in DNA-protein interactions in the tomato rbcS1, rbcS2 and rbcS3A promoter regions. Plant Molecular Biology, 21(1), 69-88. doi:10.1007/bf00039619 es_ES
dc.description.references Martineau, B., Houck, C. M., Sheehy, R. E., & Hiatt, W. R. (1994). Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. The Plant Journal, 5(1), 11-19. doi:10.1046/j.1365-313x.1994.5010011.x es_ES
dc.description.references Mehta, R. A., Cassol, T., Li, N., Ali, N., Handa, A. K., & Mattoo, A. K. (2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotechnology, 20(6), 613-618. doi:10.1038/nbt0602-613 es_ES
dc.description.references Mondal, K., Sharma, N. S., Malhotra, S. P., Dhawan, K., & Singh, R. (2004). Antioxidant Systems in Ripening Tomato Fruits. Biologia Plantarum, 48(1), 49-53. doi:10.1023/b:biop.0000024274.43874.5b es_ES
dc.description.references Murchie, E. H., & Niyogi, K. K. (2010). Manipulation of Photoprotection to Improve Plant Photosynthesis. Plant Physiology, 155(1), 86-92. doi:10.1104/pp.110.168831 es_ES
dc.description.references Mustilli, A. C., Fenzi, F., Ciliento, R., Alfano, F., & Bowler, C. (1999). Phenotype of the Tomato high pigment-2 Mutant Is Caused by a Mutation in the Tomato Homolog of DEETIOLATED1. The Plant Cell, 11(2), 145-157. doi:10.1105/tpc.11.2.145 es_ES
dc.description.references Nashilevitz, S., Melamed-Bessudo, C., Izkovich, Y., Rogachev, I., Osorio, S., Itkin, M., … Aharoni, A. (2010). An Orange Ripening Mutant Links Plastid NAD(P)H Dehydrogenase Complex Activity to Central and Specialized Metabolism during Tomato Fruit Maturation. The Plant Cell, 22(6), 1977-1997. doi:10.1105/tpc.110.074716 es_ES
dc.description.references Nguyen, C. V., Vrebalov, J. T., Gapper, N. E., Zheng, Y., Zhong, S., Fei, Z., & Giovannoni, J. J. (2014). Tomato GOLDEN2-LIKE Transcription Factors Reveal Molecular Gradients That Function during Fruit Development and Ripening. The Plant Cell, 26(2), 585-601. doi:10.1105/tpc.113.118794 es_ES
dc.description.references Nunes-Nesi, A., Araújo, W. L., & Fernie, A. R. (2010). Targeting Mitochondrial Metabolism and Machinery as a Means to Enhance Photosynthesis. Plant Physiology, 155(1), 101-107. doi:10.1104/pp.110.163816 es_ES
dc.description.references Obiadalla-Ali, H., Fernie, A., Lytovchenko, A., Kossmann, J., & Lloyd, J. (2004). Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta, 219(3). doi:10.1007/s00425-004-1257-y es_ES
dc.description.references Pan, Y., Bradley, G., Pyke, K., Ball, G., Lu, C., Fray, R., … Seymour, G. B. (2013). Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits. Plant Physiology, 161(3), 1476-1485. doi:10.1104/pp.112.212654 es_ES
dc.description.references Peet, M. M. (1992). Fruit Cracking in Tomato. HortTechnology, 2(2), 216-223. doi:10.21273/horttech.2.2.216 es_ES
dc.description.references Pfannschmidt, T., Nilsson, A., & Allen, J. F. (1999). Photosynthetic control of chloroplast gene expression. Nature, 397(6720), 625-628. doi:10.1038/17624 es_ES
dc.description.references Piechulla, B., Glick, R. E., Bahl, H., Melis, A., & Gruissem, W. (1987). Changes in Photosynthetic Capacity and Photosynthetic Protein Pattern during Tomato Fruit Ripening. Plant Physiology, 84(3), 911-917. doi:10.1104/pp.84.3.911 es_ES
dc.description.references Piechulla, B., & Gruissem, W. (1987). Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. The EMBO Journal, 6(12), 3593-3599. doi:10.1002/j.1460-2075.1987.tb02690.x es_ES
dc.description.references Piechulla, B., Pichersky, E., Cashmore, A. R., & Gruissem, W. (1986). Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Molecular Biology, 7(5), 367-376. doi:10.1007/bf00032566 es_ES
dc.description.references Powell, A. L. T., Kalamaki, M. S., Kurien, P. A., Gurrieri, S., & Bennett, A. B. (2003). Simultaneous Transgenic Suppression of LePG and LeExp1 Influences Fruit Texture and Juice Viscosity in a Fresh Market Tomato Variety. Journal of Agricultural and Food Chemistry, 51(25), 7450-7455. doi:10.1021/jf034165d es_ES
dc.description.references Powell, A. L. T., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., … Bennett, A. B. (2012). Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 336(6089), 1711-1715. doi:10.1126/science.1222218 es_ES
dc.description.references Rohrmann, J., Tohge, T., Alba, R., Osorio, S., Caldana, C., McQuinn, R., … Fernie, A. R. (2011). Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. The Plant Journal, 68(6), 999-1013. doi:10.1111/j.1365-313x.2011.04750.x es_ES
dc.description.references Sagar, M., Chervin, C., Mila, I., Hao, Y., Roustan, J.-P., Benichou, M., … Zouine, M. (2013). SlARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development. Plant Physiology, 161(3), 1362-1374. doi:10.1104/pp.113.213843 es_ES
dc.description.references Schaffer, A. A., & Petreikov, M. (1997). Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation. Plant Physiology, 113(3), 739-746. doi:10.1104/pp.113.3.739 es_ES
dc.description.references Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192 es_ES
dc.description.references Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779-782. doi:10.1038/nature03145 es_ES
dc.description.references Smith, D. L., Abbott, J. A., & Gross, K. C. (2002). Down-Regulation of Tomato β-Galactosidase 4 Results in Decreased Fruit Softening. Plant Physiology, 129(4), 1755-1762. doi:10.1104/pp.011025 es_ES
dc.description.references Steinhauser, M.-C., Steinhauser, D., Koehl, K., Carrari, F., Gibon, Y., Fernie, A. R., & Stitt, M. (2010). Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii. Plant Physiology, 153(1), 80-98. doi:10.1104/pp.110.154336 es_ES
dc.description.references Sugita, M., & Gruissem, W. (1987). Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proceedings of the National Academy of Sciences, 84(20), 7104-7108. doi:10.1073/pnas.84.20.7104 es_ES
dc.description.references Tanaka, A., Fujita, K., & Kikuchi, K. (1974). Nutrio-physiological studies on the tomato plant III. Photosynthetic rate of individual leaves in relation to the dry matter production of plants. Soil Science and Plant Nutrition, 20(2), 173-183. doi:10.1080/00380768.1974.10433240 es_ES
dc.description.references Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830 es_ES
dc.description.references Wanner, L. A., & Gruissem, W. (1991). Expression dynamics of the tomato rbcS gene family during development. The Plant Cell, 3(12), 1289-1303. doi:10.1105/tpc.3.12.1289 es_ES
dc.description.references Waters, M. T., & Langdale, J. A. (2009). The making of a chloroplast. The EMBO Journal, 28(19), 2861-2873. doi:10.1038/emboj.2009.264 es_ES
dc.description.references Waters, M. T., Moylan, E. C., & Langdale, J. A. (2008). GLK transcription factors regulate chloroplast development in a cell-autonomous manner. The Plant Journal, 56(3), 432-444. doi:10.1111/j.1365-313x.2008.03616.x es_ES
dc.description.references Waters, M. T., Wang, P., Korkaric, M., Capper, R. G., Saunders, N. J., & Langdale, J. A. (2009). GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in Arabidopsis. The Plant Cell, 21(4), 1109-1128. doi:10.1105/tpc.108.065250 es_ES
dc.description.references Yen, H. C., Shelton, B. A., Howard, L. R., Lee, S., Vrebalov, J., & Giovannoni, J. J. (1997). The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theoretical and Applied Genetics, 95(7), 1069-1079. doi:10.1007/s001220050664 es_ES
dc.description.references Yin, Y.-G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., … Matsukura, C. (2009). Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61(2), 563-574. doi:10.1093/jxb/erp333 es_ES
dc.description.references Zanor, M. I., Osorio, S., Nunes-Nesi, A., Carrari, F., Lohse, M., Usadel, B., … Fernie, A. R. (2009). RNA Interference of LIN5 in Tomato Confirms Its Role in Controlling Brix Content, Uncovers the Influence of Sugars on the Levels of Fruit Hormones, and Demonstrates the Importance of Sucrose Cleavage for Normal Fruit Development and Fertility. Plant Physiology, 150(3), 1204-1218. doi:10.1104/pp.109.136598 es_ES
dc.description.references Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.072 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem