- -

Simulación numérica de inundación de valles fluviales mediante un modelo difusivo implícito

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulación numérica de inundación de valles fluviales mediante un modelo difusivo implícito

Mostrar el registro completo del ítem

Fernández-Pato, J.; García-Navarro, P. (2016). Simulación numérica de inundación de valles fluviales mediante un modelo difusivo implícito. Ingeniería del Agua. 20(3):115-126. https://doi.org/10.4995/ia.2016.4548

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79486

Ficheros en el ítem

Metadatos del ítem

Título: Simulación numérica de inundación de valles fluviales mediante un modelo difusivo implícito
Otro titulo: Numerical simulation of valley flood using an implicit diffusion wave model
Autor: Fernández-Pato, J. García-Navarro, P.
Fecha difusión:
Resumen:
[EN] In this work, a diffusion wave overland flow model is presented for the efficient resolution of valley flood situations. The spatial discretization is done following an upwind finite volume scheme, applied in a ...[+]


[ES] En este trabajo se presenta un modelo difusivo de flujo superficial para la resolución eficiente de problemas de inundación de valles fluviales. La discretización espacial se realiza mediante un esquema upwind de ...[+]
Palabras clave: Flujo superficial , Inundación de valles , Volúmenes finitos , Modelo difusivo , Esquemas implícitos , Overland flow , Valley flood , Finite volumes , Difusion wave model , Implicit schemes
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2016.4548
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2016.4548
Agradecimientos:
El presente trabajo ha sido parcialmente financiado por el Gobierno de Aragón a través del Fondo Social Europeo.
Tipo: Artículo

References

Burden, R.L., Faires, J.D. (2010). Numerical analysis. Brooks/Cole, Cengage Learning.

Cea, L., Garrido, M. Puertas, J. (2010). Experimental validation of two-dimensional depth-averaged models for forecasting rainfallrunoff

from precipitation data in urban áreas. Journal of Hydrology, 382(1-4), 88-102. doi:10.1016/j.jhydrol.2009.12.020 [+]
Burden, R.L., Faires, J.D. (2010). Numerical analysis. Brooks/Cole, Cengage Learning.

Cea, L., Garrido, M. Puertas, J. (2010). Experimental validation of two-dimensional depth-averaged models for forecasting rainfallrunoff

from precipitation data in urban áreas. Journal of Hydrology, 382(1-4), 88-102. doi:10.1016/j.jhydrol.2009.12.020

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C.., Han, G., Peng, S. Lu, M., Zhang, W., Tong, X., Mills, J. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7-27. doi:10.1016/j.isprsjprs.2014.09.002

Debella-Gilo, M., Etzelmüller, B. (2009). Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena, 77(1), 8-18. doi:10.1016/j.catena.2008.12.001

Guennebaud, G., Jacob, B. (2010). Eigen v3. http://eigen.tuxfamily.org.

Lal Wasantha, A. (1998). Weighted implicit finite-volume model for overland flow. Journal of Hydraulic Engineering, 124(9), 941-950. doi:10.1061/(ASCE)0733-9429(1998)124:9(941)

López-Barrera, D., García-Navarro, P., Brufau, P. Burguete, J. (2012). Diffusive-wave based hydrologic-hydraulic model with sediment transport I: model development. Journal of Hydrologic Engineering, 17(10), 1093-1104. doi:10.1061/(ASCE)HE.1943-5584.0000552

Maguya, A.S., Junttila, V., Kauranne, T. (2013). Adaptive algorithm for large scale DTM interpolation from LIDAR data for forestry applications in steep forested terrain. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 74-83. doi:10.1016/j.isprsjprs.2013.08.005

Mahmood, K., Yevjevich, V. (1975). Unsteady flows in open channels. Water Resources Publications, Fort Collins, Colorado.

Merwade, V., Cook, A., Coonrod, J. (2008). GIS techniques for creating river terrain models for hydrodynamic and flood inundation mapping. Environmental Modelling & Software, 23(10-11), 1300-1311. doi:10.1016/j.envsoft.2008.03.005

Moussa, R., Bocquillon, C. (2009). On the use of the diffusive wave modelling extreme flood events with overbank flow in floodplain. Journal of Hydrology, 374(1-2), 116-135. doi:10.1016/j.jhydrol.2009.06.006

Mui, A., He, Y, Weng, Q. (2015). An object-based approach to delineate wetlands across landscapes of varied disturbance with high spatial resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 109, 30-46. doi:10.1016/j.isprsjprs.2015.08.005

Murillo, J., García-Navarro, P. (2010). Weak solutions for partial differential equations with source terms: Application to the shallow water equations. Journal of Computational Physics, 229(11), 4327-4368. doi:10.1016/j.jcp.2010.02.016

Neal, J., Villanueva, I., Wright, N. Willis, T. Fewtrell, T., Bates, P. (2012). How much physical complexity is needed to model flood inundation? Hydrological Processes, 26(15), 2264-2282. doi:10.1002/hyp.8339

Néelz, S., Pender, G. (2013). Benchmarking of 2D hydraulic modelling packages. UK Environmental Agency.

Gomez-Pereira, L.M., Wicherson, R.J. (1999). Suitability of laser data for deriving geographical information: A case study in the context of management of fluvial zones. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 105-114. doi:10.1016/S0924-2716(99)00007-6

Ponce, V.M. (1986). Diffusion wave modeling of catchment dynamics. Journal of Hydraulic Engineering, 112(8), 716-727. doi:10.1061/(ASCE)0733-9429(1986)112:8(716)

Rabus, B., Eineder, M., Roth, A., Bamler, R. (2003). The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241-262. doi:10.1016/S0924-2716(02)00124-7

Saad. Y. (1994). ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1(4), 387-402. doi:10.1002/nla.1680010405

van der Vorst, H.A. (1992). BI-CGSTAB - A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear-systems. SIAM Journal of Scientific and Statistical Computing, 13(2), 631-644. doi:10.1137/0913035

Vreugdenhill, C.B. (1994). Numerical Methods for Shallow Water Flow. Kluwer Academic Publishers. doi:10.1007/978-94-015-8354-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem