Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4135-4195. doi:10.1016/j.cma.2004.10.008
Sederberg, T. W., Zheng, J., Bakenov, A., & Nasri, A. (2003). T-splines and T-NURCCs. ACM Transactions on Graphics, 22(3), 477. doi:10.1145/882262.882295
Escobar, J. M., Cascón, J. M., Rodríguez, E., & Montenegro, R. (2011). A new approach to solid modeling with trivariate T-splines based on mesh optimization. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3210-3222. doi:10.1016/j.cma.2011.07.004
[+]
Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4135-4195. doi:10.1016/j.cma.2004.10.008
Sederberg, T. W., Zheng, J., Bakenov, A., & Nasri, A. (2003). T-splines and T-NURCCs. ACM Transactions on Graphics, 22(3), 477. doi:10.1145/882262.882295
Escobar, J. M., Cascón, J. M., Rodríguez, E., & Montenegro, R. (2011). A new approach to solid modeling with trivariate T-splines based on mesh optimization. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3210-3222. doi:10.1016/j.cma.2011.07.004
Wang, W., Zhang, Y., Scott, M. A., & Hughes, T. J. R. (2011). Converting an unstructured quadrilateral mesh to a standard T-spline surface. Computational Mechanics, 48(4), 477-498. doi:10.1007/s00466-011-0598-1
Zhang, Y., Wang, W., & Hughes, T. J. R. (2012). Solid T-spline construction from boundary representations for genus-zero geometry. Computer Methods in Applied Mechanics and Engineering, 249-252, 185-197. doi:10.1016/j.cma.2012.01.014
Zhang, Y., Wang, W., & Hughes, T. J. R. (2012). Conformal solid T-spline construction from boundary T-spline representations. Computational Mechanics, 51(6), 1051-1059. doi:10.1007/s00466-012-0787-6
Liu, L., Zhang, Y., Hughes, T. J. R., Scott, M. A., & Sederberg, T. W. (2013). Volumetric T-spline construction using Boolean operations. Engineering with Computers, 30(4), 425-439. doi:10.1007/s00366-013-0346-6
Liu, L., Zhang, Y., Liu, Y., & Wang, W. (2015). Feature-preserving T-mesh construction using skeleton-based polycubes. Computer-Aided Design, 58, 162-172. doi:10.1016/j.cad.2014.08.020
Dolbow, J., Moës, N., & Belytschko, T. (2000). Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design, 36(3-4), 235-260. doi:10.1016/s0168-874x(00)00035-4
Strouboulis, T., Babuška, I., & Copps, K. (2000). The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 181(1-3), 43-69. doi:10.1016/s0045-7825(99)00072-9
Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0
Bordas, S. P. A., Rabczuk, T., Rodenas, J.-J., Kerfriden, P., Moumnassi, M., & Belouettar, S. (2010). Recent Advances Towards Reducing the Meshing and Re-Meshing Burden in Computational Sciences. Computational Technology Reviews, 2, 51-82. doi:10.4203/ctr.2.3
Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3), 220-252. doi:10.1016/0021-9991(77)90100-0
Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067. doi:10.1016/j.cma.2003.12.044
Mittal, R., & Iaccarino, G. (2005). IMMERSED BOUNDARY METHODS. Annual Review of Fluid Mechanics, 37(1), 239-261. doi:10.1146/annurev.fluid.37.061903.175743
Liu, W. K., Liu, Y., Farrell, D., Zhang, L., Wang, X. S., Fukui, Y., … Hsu, H. (2006). Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering, 195(13-16), 1722-1749. doi:10.1016/j.cma.2005.05.049
Liu, W. K., Kim, D. W., & Tang, S. (2005). Mathematical foundations of the immersed finite element method. Computational Mechanics, 39(3), 211-222. doi:10.1007/s00466-005-0018-5
Gil, A. J., Arranz Carreño, A., Bonet, J., & Hassan, O. (2010). The Immersed Structural Potential Method for haemodynamic applications. Journal of Computational Physics, 229(22), 8613-8641. doi:10.1016/j.jcp.2010.08.005
Cirak, F., Ortiz, M., & Schr�der, P. (2000). Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 47(12), 2039-2072. doi:10.1002/(sici)1097-0207(20000430)47:12<2039::aid-nme872>3.0.co;2-1
Inoue, K., Kikuchi, Y., & Masuyama, T. (2005). A nurbs finite element method for product shape design. Journal of Engineering Design, 16(2), 157-171. doi:10.1080/01405110500033127
Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric Analysis. doi:10.1002/9780470749081
Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). NURBS-Enhanced Finite Element Method (NEFEM). Archives of Computational Methods in Engineering, 18(4), 441-484. doi:10.1007/s11831-011-9066-5
Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). 3D NURBS-enhanced finite element method (NEFEM). International Journal for Numerical Methods in Engineering, 88(2), 103-125. doi:10.1002/nme.3164
Legrain, G. (2013). A NURBS enhanced extended finite element approach for unfitted CAD analysis. Computational Mechanics, 52(4), 913-929. doi:10.1007/s00466-013-0854-7
Rüberg, T., & Cirak, F. (2012). Subdivision-stabilised immersed b-spline finite elements for moving boundary flows. Computer Methods in Applied Mechanics and Engineering, 209-212, 266-283. doi:10.1016/j.cma.2011.10.007
Kim, H.-J., Seo, Y.-D., & Youn, S.-K. (2010). Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Computer Methods in Applied Mechanics and Engineering, 199(45-48), 2796-2812. doi:10.1016/j.cma.2010.04.015
Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-y
Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786
Nadal E Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization Ph.D Thesis Valencia 2014
Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206
Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629
De Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences. doi:10.1007/978-1-4612-6333-3
Piegl, L., & Tiller, W. (1995). The NURBS Book. Monographs in Visual Communications. doi:10.1007/978-3-642-97385-7
Sederberg, T. W., Cardon, D. L., Finnigan, G. T., North, N. S., Zheng, J., & Lyche, T. (2004). T-spline simplification and local refinement. ACM Transactions on Graphics, 23(3), 276. doi:10.1145/1015706.1015715
Borden, M. J., Scott, M. A., Evans, J. A., & Hughes, T. J. R. (2010). Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87(1-5), 15-47. doi:10.1002/nme.2968
Wang, W., Zhang, Y., Xu, G., & Hughes, T. J. R. (2011). Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline. Computational Mechanics, 50(1), 65-84. doi:10.1007/s00466-011-0674-6
Johnson, A. A., & Tezduyar, T. E. (1999). Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23(2), 130-143. doi:10.1007/s004660050393
Sevilla, R., Hassan, O., & Morgan, K. (2014). The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of Maxwell’s equations. Computers & Structures, 137, 2-13. doi:10.1016/j.compstruc.2013.01.014
Martin, W., Cohen, E., Fish, R., & Shirley, P. (2000). Practical Ray Tracing of Trimmed NURBS Surfaces. Journal of Graphics Tools, 5(1), 27-52. doi:10.1080/10867651.2000.10487519
Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163-169. doi:10.1145/37402.37422
Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). Comparison of high-order curved finite elements. International Journal for Numerical Methods in Engineering, 87(8), 719-734. doi:10.1002/nme.3129
Gordon, W. J., & Hall, C. A. (1973). Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numerische Mathematik, 21(2), 109-129. doi:10.1007/bf01436298
Wandzurat, S., & Xiao, H. (2003). Symmetric quadrature rules on a triangle. Computers & Mathematics with Applications, 45(12), 1829-1840. doi:10.1016/s0898-1221(03)90004-6
Sevilla, R., & Fernández-Méndez, S. (2011). Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM. Finite Elements in Analysis and Design, 47(10), 1209-1220. doi:10.1016/j.finel.2011.05.011
[-]