- -

Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marco Alacid, Onofre es_ES
dc.contributor.author Sevilla, R. es_ES
dc.contributor.author Zhang, Yongjie es_ES
dc.contributor.author Ródenas, J.J. es_ES
dc.contributor.author Tur Valiente, Manuel es_ES
dc.date.accessioned 2017-04-11T12:19:13Z
dc.date.available 2017-04-11T12:19:13Z
dc.date.issued 2015-08
dc.identifier.issn 0029-5981
dc.identifier.uri http://hdl.handle.net/10251/79660
dc.description.abstract [EN] This paper proposes a novel Immersed Boundary Method where the embedded domain is exactly described by using its Computer-Aided Design (CAD) boundary representation with Non-Uniform Rational B-Splines (NURBS) or T-splines. The common feature with other immersed methods is that the current approach substantially reduces the burden of mesh generation. In contrast, the exact boundary representation of the embedded domain allows to overcome the major drawback of existing immersed methods that is the inaccurate representation of the physical domain. A novel approach to perform the numerical integration in the region of the cut elements that is internal to the physical domain is presented and its accuracy and performance evaluated using numerical tests. The applicability, performance, and optimal convergence of the proposed methodology is assessed by using numerical examples in three dimensions. It is also shown that the accuracy of the proposed methodology is independent on the CAD technology used to describe the geometry of the embedded domain. es_ES
dc.description.sponsorship With the support of the European Union Framework Program (FP7) under grant No. 289361 INSIST, Ministerio de Economia y Competitividad of Spain (DPI2010-20542)(DPI2013-46317-R), FPI program (BES-2011-044080), and Generalitat Valenciana (PROMETEO/2012/023). R. Sevilla gratefully acknowledges the financial support provided by the Ser Cymru National Research Network in Advanced Engineering and Materials. Y. Zhang was supported in part by the PECASE Award N00014-14-1-0234 and NSF CAREER Award OCI-1149591. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation MINECO/DPI2010-20542 es_ES
dc.relation.ispartof International Journal for Numerical Methods in Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Immersed Boundary Methods es_ES
dc.subject Cartesian grids es_ES
dc.subject NURBS es_ES
dc.subject T-spline es_ES
dc.subject Bézier extraction es_ES
dc.subject NEFEM es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nme.4914
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46317-R/ES/PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS FINITOS A PARTIR DE IMAGENES MEDICAS 3D/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-044080/ES/BES-2011-044080/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Marco Alacid, O.; Sevilla, R.; Zhang, Y.; Ródenas, J.; Tur Valiente, M. (2015). Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering. 103(6):445-468. https://doi.org/10.1002/nme.4914 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/nme.4914 es_ES
dc.description.upvformatpinicio 445 es_ES
dc.description.upvformatpfin 468 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 302569 es_ES
dc.identifier.eissn 1097-0207
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.description.references Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4135-4195. doi:10.1016/j.cma.2004.10.008 es_ES
dc.description.references Sederberg, T. W., Zheng, J., Bakenov, A., & Nasri, A. (2003). T-splines and T-NURCCs. ACM Transactions on Graphics, 22(3), 477. doi:10.1145/882262.882295 es_ES
dc.description.references Escobar, J. M., Cascón, J. M., Rodríguez, E., & Montenegro, R. (2011). A new approach to solid modeling with trivariate T-splines based on mesh optimization. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3210-3222. doi:10.1016/j.cma.2011.07.004 es_ES
dc.description.references Wang, W., Zhang, Y., Scott, M. A., & Hughes, T. J. R. (2011). Converting an unstructured quadrilateral mesh to a standard T-spline surface. Computational Mechanics, 48(4), 477-498. doi:10.1007/s00466-011-0598-1 es_ES
dc.description.references Zhang, Y., Wang, W., & Hughes, T. J. R. (2012). Solid T-spline construction from boundary representations for genus-zero geometry. Computer Methods in Applied Mechanics and Engineering, 249-252, 185-197. doi:10.1016/j.cma.2012.01.014 es_ES
dc.description.references Zhang, Y., Wang, W., & Hughes, T. J. R. (2012). Conformal solid T-spline construction from boundary T-spline representations. Computational Mechanics, 51(6), 1051-1059. doi:10.1007/s00466-012-0787-6 es_ES
dc.description.references Liu, L., Zhang, Y., Hughes, T. J. R., Scott, M. A., & Sederberg, T. W. (2013). Volumetric T-spline construction using Boolean operations. Engineering with Computers, 30(4), 425-439. doi:10.1007/s00366-013-0346-6 es_ES
dc.description.references Liu, L., Zhang, Y., Liu, Y., & Wang, W. (2015). Feature-preserving T-mesh construction using skeleton-based polycubes. Computer-Aided Design, 58, 162-172. doi:10.1016/j.cad.2014.08.020 es_ES
dc.description.references Dolbow, J., Moës, N., & Belytschko, T. (2000). Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design, 36(3-4), 235-260. doi:10.1016/s0168-874x(00)00035-4 es_ES
dc.description.references Strouboulis, T., Babuška, I., & Copps, K. (2000). The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 181(1-3), 43-69. doi:10.1016/s0045-7825(99)00072-9 es_ES
dc.description.references Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0 es_ES
dc.description.references Bordas, S. P. A., Rabczuk, T., Rodenas, J.-J., Kerfriden, P., Moumnassi, M., & Belouettar, S. (2010). Recent Advances Towards Reducing the Meshing and Re-Meshing Burden in Computational Sciences. Computational Technology Reviews, 2, 51-82. doi:10.4203/ctr.2.3 es_ES
dc.description.references Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3), 220-252. doi:10.1016/0021-9991(77)90100-0 es_ES
dc.description.references Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067. doi:10.1016/j.cma.2003.12.044 es_ES
dc.description.references Mittal, R., & Iaccarino, G. (2005). IMMERSED BOUNDARY METHODS. Annual Review of Fluid Mechanics, 37(1), 239-261. doi:10.1146/annurev.fluid.37.061903.175743 es_ES
dc.description.references Liu, W. K., Liu, Y., Farrell, D., Zhang, L., Wang, X. S., Fukui, Y., … Hsu, H. (2006). Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering, 195(13-16), 1722-1749. doi:10.1016/j.cma.2005.05.049 es_ES
dc.description.references Liu, W. K., Kim, D. W., & Tang, S. (2005). Mathematical foundations of the immersed finite element method. Computational Mechanics, 39(3), 211-222. doi:10.1007/s00466-005-0018-5 es_ES
dc.description.references Gil, A. J., Arranz Carreño, A., Bonet, J., & Hassan, O. (2010). The Immersed Structural Potential Method for haemodynamic applications. Journal of Computational Physics, 229(22), 8613-8641. doi:10.1016/j.jcp.2010.08.005 es_ES
dc.description.references Cirak, F., Ortiz, M., & Schr�der, P. (2000). Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 47(12), 2039-2072. doi:10.1002/(sici)1097-0207(20000430)47:12<2039::aid-nme872>3.0.co;2-1 es_ES
dc.description.references Inoue, K., Kikuchi, Y., & Masuyama, T. (2005). A nurbs finite element method for product shape design. Journal of Engineering Design, 16(2), 157-171. doi:10.1080/01405110500033127 es_ES
dc.description.references Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric Analysis. doi:10.1002/9780470749081 es_ES
dc.description.references Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). NURBS-Enhanced Finite Element Method (NEFEM). Archives of Computational Methods in Engineering, 18(4), 441-484. doi:10.1007/s11831-011-9066-5 es_ES
dc.description.references Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). 3D NURBS-enhanced finite element method (NEFEM). International Journal for Numerical Methods in Engineering, 88(2), 103-125. doi:10.1002/nme.3164 es_ES
dc.description.references Legrain, G. (2013). A NURBS enhanced extended finite element approach for unfitted CAD analysis. Computational Mechanics, 52(4), 913-929. doi:10.1007/s00466-013-0854-7 es_ES
dc.description.references Rüberg, T., & Cirak, F. (2012). Subdivision-stabilised immersed b-spline finite elements for moving boundary flows. Computer Methods in Applied Mechanics and Engineering, 209-212, 266-283. doi:10.1016/j.cma.2011.10.007 es_ES
dc.description.references Kim, H.-J., Seo, Y.-D., & Youn, S.-K. (2010). Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Computer Methods in Applied Mechanics and Engineering, 199(45-48), 2796-2812. doi:10.1016/j.cma.2010.04.015 es_ES
dc.description.references Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-y es_ES
dc.description.references Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786 es_ES
dc.description.references Nadal E Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization Ph.D Thesis Valencia 2014 es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206 es_ES
dc.description.references Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629 es_ES
dc.description.references De Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences. doi:10.1007/978-1-4612-6333-3 es_ES
dc.description.references Piegl, L., & Tiller, W. (1995). The NURBS Book. Monographs in Visual Communications. doi:10.1007/978-3-642-97385-7 es_ES
dc.description.references Sederberg, T. W., Cardon, D. L., Finnigan, G. T., North, N. S., Zheng, J., & Lyche, T. (2004). T-spline simplification and local refinement. ACM Transactions on Graphics, 23(3), 276. doi:10.1145/1015706.1015715 es_ES
dc.description.references Borden, M. J., Scott, M. A., Evans, J. A., & Hughes, T. J. R. (2010). Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87(1-5), 15-47. doi:10.1002/nme.2968 es_ES
dc.description.references Wang, W., Zhang, Y., Xu, G., & Hughes, T. J. R. (2011). Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline. Computational Mechanics, 50(1), 65-84. doi:10.1007/s00466-011-0674-6 es_ES
dc.description.references Johnson, A. A., & Tezduyar, T. E. (1999). Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23(2), 130-143. doi:10.1007/s004660050393 es_ES
dc.description.references Sevilla, R., Hassan, O., & Morgan, K. (2014). The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of Maxwell’s equations. Computers & Structures, 137, 2-13. doi:10.1016/j.compstruc.2013.01.014 es_ES
dc.description.references Martin, W., Cohen, E., Fish, R., & Shirley, P. (2000). Practical Ray Tracing of Trimmed NURBS Surfaces. Journal of Graphics Tools, 5(1), 27-52. doi:10.1080/10867651.2000.10487519 es_ES
dc.description.references Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163-169. doi:10.1145/37402.37422 es_ES
dc.description.references Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). Comparison of high-order curved finite elements. International Journal for Numerical Methods in Engineering, 87(8), 719-734. doi:10.1002/nme.3129 es_ES
dc.description.references Gordon, W. J., & Hall, C. A. (1973). Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numerische Mathematik, 21(2), 109-129. doi:10.1007/bf01436298 es_ES
dc.description.references Wandzurat, S., & Xiao, H. (2003). Symmetric quadrature rules on a triangle. Computers & Mathematics with Applications, 45(12), 1829-1840. doi:10.1016/s0898-1221(03)90004-6 es_ES
dc.description.references Sevilla, R., & Fernández-Méndez, S. (2011). Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM. Finite Elements in Analysis and Design, 47(10), 1209-1220. doi:10.1016/j.finel.2011.05.011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem