Mostrar el registro sencillo del ítem
dc.contributor.author | Marco Alacid, Onofre | es_ES |
dc.contributor.author | Sevilla, R. | es_ES |
dc.contributor.author | Zhang, Yongjie | es_ES |
dc.contributor.author | Ródenas, J.J. | es_ES |
dc.contributor.author | Tur Valiente, Manuel | es_ES |
dc.date.accessioned | 2017-04-11T12:19:13Z | |
dc.date.available | 2017-04-11T12:19:13Z | |
dc.date.issued | 2015-08 | |
dc.identifier.issn | 0029-5981 | |
dc.identifier.uri | http://hdl.handle.net/10251/79660 | |
dc.description.abstract | [EN] This paper proposes a novel Immersed Boundary Method where the embedded domain is exactly described by using its Computer-Aided Design (CAD) boundary representation with Non-Uniform Rational B-Splines (NURBS) or T-splines. The common feature with other immersed methods is that the current approach substantially reduces the burden of mesh generation. In contrast, the exact boundary representation of the embedded domain allows to overcome the major drawback of existing immersed methods that is the inaccurate representation of the physical domain. A novel approach to perform the numerical integration in the region of the cut elements that is internal to the physical domain is presented and its accuracy and performance evaluated using numerical tests. The applicability, performance, and optimal convergence of the proposed methodology is assessed by using numerical examples in three dimensions. It is also shown that the accuracy of the proposed methodology is independent on the CAD technology used to describe the geometry of the embedded domain. | es_ES |
dc.description.sponsorship | With the support of the European Union Framework Program (FP7) under grant No. 289361 INSIST, Ministerio de Economia y Competitividad of Spain (DPI2010-20542)(DPI2013-46317-R), FPI program (BES-2011-044080), and Generalitat Valenciana (PROMETEO/2012/023). R. Sevilla gratefully acknowledges the financial support provided by the Ser Cymru National Research Network in Advanced Engineering and Materials. Y. Zhang was supported in part by the PECASE Award N00014-14-1-0234 and NSF CAREER Award OCI-1149591. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation | MINECO/DPI2010-20542 | es_ES |
dc.relation.ispartof | International Journal for Numerical Methods in Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Immersed Boundary Methods | es_ES |
dc.subject | Cartesian grids | es_ES |
dc.subject | NURBS | es_ES |
dc.subject | T-spline | es_ES |
dc.subject | Bézier extraction | es_ES |
dc.subject | NEFEM | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/nme.4914 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-46317-R/ES/PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS FINITOS A PARTIR DE IMAGENES MEDICAS 3D/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-044080/ES/BES-2011-044080/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Marco Alacid, O.; Sevilla, R.; Zhang, Y.; Ródenas, J.; Tur Valiente, M. (2015). Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering. 103(6):445-468. https://doi.org/10.1002/nme.4914 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/nme.4914 | es_ES |
dc.description.upvformatpinicio | 445 | es_ES |
dc.description.upvformatpfin | 468 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 103 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 302569 | es_ES |
dc.identifier.eissn | 1097-0207 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4135-4195. doi:10.1016/j.cma.2004.10.008 | es_ES |
dc.description.references | Sederberg, T. W., Zheng, J., Bakenov, A., & Nasri, A. (2003). T-splines and T-NURCCs. ACM Transactions on Graphics, 22(3), 477. doi:10.1145/882262.882295 | es_ES |
dc.description.references | Escobar, J. M., Cascón, J. M., Rodríguez, E., & Montenegro, R. (2011). A new approach to solid modeling with trivariate T-splines based on mesh optimization. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3210-3222. doi:10.1016/j.cma.2011.07.004 | es_ES |
dc.description.references | Wang, W., Zhang, Y., Scott, M. A., & Hughes, T. J. R. (2011). Converting an unstructured quadrilateral mesh to a standard T-spline surface. Computational Mechanics, 48(4), 477-498. doi:10.1007/s00466-011-0598-1 | es_ES |
dc.description.references | Zhang, Y., Wang, W., & Hughes, T. J. R. (2012). Solid T-spline construction from boundary representations for genus-zero geometry. Computer Methods in Applied Mechanics and Engineering, 249-252, 185-197. doi:10.1016/j.cma.2012.01.014 | es_ES |
dc.description.references | Zhang, Y., Wang, W., & Hughes, T. J. R. (2012). Conformal solid T-spline construction from boundary T-spline representations. Computational Mechanics, 51(6), 1051-1059. doi:10.1007/s00466-012-0787-6 | es_ES |
dc.description.references | Liu, L., Zhang, Y., Hughes, T. J. R., Scott, M. A., & Sederberg, T. W. (2013). Volumetric T-spline construction using Boolean operations. Engineering with Computers, 30(4), 425-439. doi:10.1007/s00366-013-0346-6 | es_ES |
dc.description.references | Liu, L., Zhang, Y., Liu, Y., & Wang, W. (2015). Feature-preserving T-mesh construction using skeleton-based polycubes. Computer-Aided Design, 58, 162-172. doi:10.1016/j.cad.2014.08.020 | es_ES |
dc.description.references | Dolbow, J., Moës, N., & Belytschko, T. (2000). Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design, 36(3-4), 235-260. doi:10.1016/s0168-874x(00)00035-4 | es_ES |
dc.description.references | Strouboulis, T., Babuška, I., & Copps, K. (2000). The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 181(1-3), 43-69. doi:10.1016/s0045-7825(99)00072-9 | es_ES |
dc.description.references | Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0 | es_ES |
dc.description.references | Bordas, S. P. A., Rabczuk, T., Rodenas, J.-J., Kerfriden, P., Moumnassi, M., & Belouettar, S. (2010). Recent Advances Towards Reducing the Meshing and Re-Meshing Burden in Computational Sciences. Computational Technology Reviews, 2, 51-82. doi:10.4203/ctr.2.3 | es_ES |
dc.description.references | Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3), 220-252. doi:10.1016/0021-9991(77)90100-0 | es_ES |
dc.description.references | Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067. doi:10.1016/j.cma.2003.12.044 | es_ES |
dc.description.references | Mittal, R., & Iaccarino, G. (2005). IMMERSED BOUNDARY METHODS. Annual Review of Fluid Mechanics, 37(1), 239-261. doi:10.1146/annurev.fluid.37.061903.175743 | es_ES |
dc.description.references | Liu, W. K., Liu, Y., Farrell, D., Zhang, L., Wang, X. S., Fukui, Y., … Hsu, H. (2006). Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering, 195(13-16), 1722-1749. doi:10.1016/j.cma.2005.05.049 | es_ES |
dc.description.references | Liu, W. K., Kim, D. W., & Tang, S. (2005). Mathematical foundations of the immersed finite element method. Computational Mechanics, 39(3), 211-222. doi:10.1007/s00466-005-0018-5 | es_ES |
dc.description.references | Gil, A. J., Arranz Carreño, A., Bonet, J., & Hassan, O. (2010). The Immersed Structural Potential Method for haemodynamic applications. Journal of Computational Physics, 229(22), 8613-8641. doi:10.1016/j.jcp.2010.08.005 | es_ES |
dc.description.references | Cirak, F., Ortiz, M., & Schr�der, P. (2000). Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 47(12), 2039-2072. doi:10.1002/(sici)1097-0207(20000430)47:12<2039::aid-nme872>3.0.co;2-1 | es_ES |
dc.description.references | Inoue, K., Kikuchi, Y., & Masuyama, T. (2005). A nurbs finite element method for product shape design. Journal of Engineering Design, 16(2), 157-171. doi:10.1080/01405110500033127 | es_ES |
dc.description.references | Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric Analysis. doi:10.1002/9780470749081 | es_ES |
dc.description.references | Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). NURBS-Enhanced Finite Element Method (NEFEM). Archives of Computational Methods in Engineering, 18(4), 441-484. doi:10.1007/s11831-011-9066-5 | es_ES |
dc.description.references | Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). 3D NURBS-enhanced finite element method (NEFEM). International Journal for Numerical Methods in Engineering, 88(2), 103-125. doi:10.1002/nme.3164 | es_ES |
dc.description.references | Legrain, G. (2013). A NURBS enhanced extended finite element approach for unfitted CAD analysis. Computational Mechanics, 52(4), 913-929. doi:10.1007/s00466-013-0854-7 | es_ES |
dc.description.references | Rüberg, T., & Cirak, F. (2012). Subdivision-stabilised immersed b-spline finite elements for moving boundary flows. Computer Methods in Applied Mechanics and Engineering, 209-212, 266-283. doi:10.1016/j.cma.2011.10.007 | es_ES |
dc.description.references | Kim, H.-J., Seo, Y.-D., & Youn, S.-K. (2010). Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Computer Methods in Applied Mechanics and Engineering, 199(45-48), 2796-2812. doi:10.1016/j.cma.2010.04.015 | es_ES |
dc.description.references | Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-y | es_ES |
dc.description.references | Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786 | es_ES |
dc.description.references | Nadal E Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization Ph.D Thesis Valencia 2014 | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206 | es_ES |
dc.description.references | Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629 | es_ES |
dc.description.references | De Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences. doi:10.1007/978-1-4612-6333-3 | es_ES |
dc.description.references | Piegl, L., & Tiller, W. (1995). The NURBS Book. Monographs in Visual Communications. doi:10.1007/978-3-642-97385-7 | es_ES |
dc.description.references | Sederberg, T. W., Cardon, D. L., Finnigan, G. T., North, N. S., Zheng, J., & Lyche, T. (2004). T-spline simplification and local refinement. ACM Transactions on Graphics, 23(3), 276. doi:10.1145/1015706.1015715 | es_ES |
dc.description.references | Borden, M. J., Scott, M. A., Evans, J. A., & Hughes, T. J. R. (2010). Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87(1-5), 15-47. doi:10.1002/nme.2968 | es_ES |
dc.description.references | Wang, W., Zhang, Y., Xu, G., & Hughes, T. J. R. (2011). Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline. Computational Mechanics, 50(1), 65-84. doi:10.1007/s00466-011-0674-6 | es_ES |
dc.description.references | Johnson, A. A., & Tezduyar, T. E. (1999). Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23(2), 130-143. doi:10.1007/s004660050393 | es_ES |
dc.description.references | Sevilla, R., Hassan, O., & Morgan, K. (2014). The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of Maxwell’s equations. Computers & Structures, 137, 2-13. doi:10.1016/j.compstruc.2013.01.014 | es_ES |
dc.description.references | Martin, W., Cohen, E., Fish, R., & Shirley, P. (2000). Practical Ray Tracing of Trimmed NURBS Surfaces. Journal of Graphics Tools, 5(1), 27-52. doi:10.1080/10867651.2000.10487519 | es_ES |
dc.description.references | Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163-169. doi:10.1145/37402.37422 | es_ES |
dc.description.references | Sevilla, R., Fernández-Méndez, S., & Huerta, A. (2011). Comparison of high-order curved finite elements. International Journal for Numerical Methods in Engineering, 87(8), 719-734. doi:10.1002/nme.3129 | es_ES |
dc.description.references | Gordon, W. J., & Hall, C. A. (1973). Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numerische Mathematik, 21(2), 109-129. doi:10.1007/bf01436298 | es_ES |
dc.description.references | Wandzurat, S., & Xiao, H. (2003). Symmetric quadrature rules on a triangle. Computers & Mathematics with Applications, 45(12), 1829-1840. doi:10.1016/s0898-1221(03)90004-6 | es_ES |
dc.description.references | Sevilla, R., & Fernández-Méndez, S. (2011). Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM. Finite Elements in Analysis and Design, 47(10), 1209-1220. doi:10.1016/j.finel.2011.05.011 | es_ES |