- -

Can dasymetric mapping significantly improve population data reallocation in a dense urban area?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Can dasymetric mapping significantly improve population data reallocation in a dense urban area?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pavía, José M. es_ES
dc.contributor.author Cantarino Martí, Isidro es_ES
dc.date.accessioned 2017-04-12T14:20:12Z
dc.date.available 2017-04-12T14:20:12Z
dc.date.issued 2017-04
dc.identifier.issn 0016-7363
dc.identifier.uri http://hdl.handle.net/10251/79699
dc.description.abstract The issue of reallocating population figures from a set of geographical units onto another set of units has received a great deal of attention in the literature. Every other day, a new algorithm is proposed, claiming that it outperforms competitor procedures. Unfortunately, when the new (usually more complex) methods are applied to a new data set, the improvements attained are sometimes just marginal. The relationship cost-effectiveness of the solutions is case-dependent. The majority of studies have focused on large areas with heterogeneous population density distributions. The general conclusion is that as a rule more sophisticated methods are worth the effort. It could be argued, however, that when we work with a variable that varies gradually in relatively homogeneous small units, simple areal weighting methods could be sufficient and that ancillary variables would produce marginal improvements. For the case of reallocating census data, our study shows that, even under the above conditions, the most sophisticated approaches clearly yield the better results. After testing fourteen methods in Barcelona (Spain), the best results are attained using as ancillary variable the total dwelling area in each residential building. Our study shows the 3-D methods as generating the better outcomes followed by multiclass 2-D procedures, binary 2-D approaches and areal weighting and 1-D algorithms. The point-based interpolation procedures are by far the ones producing the worst estimates. es_ES
dc.description.sponsorship We wish to thank three anonymous referees for their valuable suggestions and comments, the Spanish Official Statistical Agency (INE) for their first-rate assistance in producing, from individual records, the benchmark variables analyzed in this research and Marie Hodkinson for revising the English of the paper. This work was supported by the Spanish Ministry of Economics and Competitiveness under Grant CSO2013-43054-R. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Geographical Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dasymetric mapping es_ES
dc.subject Population data reallocation es_ES
dc.subject Census data es_ES
dc.subject.classification INGENIERIA DEL TERRENO es_ES
dc.title Can dasymetric mapping significantly improve population data reallocation in a dense urban area? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/gean.12112
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CSO2013-43054-R/ES/ESTRUCTURA SOCIAL, ENCUESTAS Y ELECCIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica es_ES
dc.description.bibliographicCitation Pavía, JM.; Cantarino Martí, I. (2017). Can dasymetric mapping significantly improve population data reallocation in a dense urban area?. Geographical Analysis. 49(2):155-174. https://doi.org/10.1111/gean.12112 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/gean.12112 es_ES
dc.description.upvformatpinicio 155 es_ES
dc.description.upvformatpfin 174 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 317746 es_ES
dc.identifier.eissn 1538-4632
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Instituto Nacional de Estadística es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem