- -

Estimates for vector valued Dirichlet polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimates for vector valued Dirichlet polynomials

Mostrar el registro completo del ítem

Defant, A.; Schwarting, U.; Sevilla Peris, P. (2014). Estimates for vector valued Dirichlet polynomials. Monatshefte f�r Mathematik. 175(1):89-116. https://doi.org/10.1007/s00605-013-0600-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79725

Ficheros en el ítem

Metadatos del ítem

Título: Estimates for vector valued Dirichlet polynomials
Autor: Defant, Andreas Schwarting, Ursula Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] We estimate the -norm of finite Dirichlet polynomials with coefficients in a Banach space. Our estimates quantify several recent results on Bohr's strips of uniform but non absolute convergence of Dirichlet series in ...[+]
Palabras clave: Dirichlet series in Banach space , Bohr's strips of convergence , Bohr-Bohnenblust-Hille Theorem in Banach spaces
Derechos de uso: Reserva de todos los derechos
Fuente:
Monatshefte f�r Mathematik. (issn: 0026-9255 ) (eissn: 1436-5081 )
DOI: 10.1007/s00605-013-0600-4
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s00605-013-0600-4
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/
Agradecimientos:
A. Defant and P. Sevilla-Peris were supported by MICINN Project MTM2011-22417.
Tipo: Artículo

References

Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)

Bennett, G.: Inclusion mappings between $$l^{p}$$ l p spaces. J. Funct. Anal. 13, 20–27 (1973) [+]
Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)

Bennett, G.: Inclusion mappings between $$l^{p}$$ l p spaces. J. Funct. Anal. 13, 20–27 (1973)

Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931)

Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum \frac{a_n}{n^s}$$ ∑ a n n s . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., Heft 4, 441–488 (1913)

Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913)

Carl, B.: Absolut- $$(p,\,1)$$ ( p , 1 ) -summierende identische Operatoren von $$l_{u}$$ l u in $$l_{v}$$ l v . Math. Nachr. 63, 353–360 (1974)

Carlson, F.: Contributions à la théorie des séries de Dirichlet. Note i. Ark. fö”r Mat., Astron. och Fys. 16(18), 1–19 (1922)

de la Bretèche, R.: Sur l’ordre de grandeur des polynômes de Dirichlet. Acta Arith. 134(2), 141–148 (2008)

Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485–497 (2011)

Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)

Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Bohr’s strips for Dirichlet series in Banach spaces. Funct. Approx. Comment. Math. 44(part 2), 165–189 (2011)

Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837–2857 (2012)

Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220–242 (2010)

Defant, A., Sevilla-Peris, P.: Convergence of Dirichlet polynomials in Banach spaces. Trans. Am. Math. Soc. 363(2), 681–697 (2011)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)

Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. Actualités Aci. Indust., No. 1367. Hermann, Paris (1975)

Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$ L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997)

Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985)

Konyagin, S.V., Queffélec, H.: The translation $$\frac{1}{2}$$ 1 2 in the theory of Dirichlet series. Real Anal. Exch. 27(1):155–175 (2001/2002)

Kwapień, S.: Some remarks on $$(p,\, q)$$ ( p , q ) -absolutely summing operators in $$l_{p}$$ l p -spaces. Studia Math. 29, 327–337 (1968)

Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, reprint of the 1991 edn. Classics in Mathematics. Springer, Berlin (2011)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979)

Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16, 676–692 (2010)

Prachar, K.: Primzahlverteilung. Springer, Berlin (1957)

Queffélec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995)

Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow (1989)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem