- -

Estimates for vector valued Dirichlet polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimates for vector valued Dirichlet polynomials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Defant, Andreas es_ES
dc.contributor.author Schwarting, Ursula es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2017-04-18T09:58:16Z
dc.date.available 2017-04-18T09:58:16Z
dc.date.issued 2014-09
dc.identifier.issn 0026-9255
dc.identifier.uri http://hdl.handle.net/10251/79725
dc.description.abstract [EN] We estimate the -norm of finite Dirichlet polynomials with coefficients in a Banach space. Our estimates quantify several recent results on Bohr's strips of uniform but non absolute convergence of Dirichlet series in Banach spaces. es_ES
dc.description.sponsorship A. Defant and P. Sevilla-Peris were supported by MICINN Project MTM2011-22417. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Monatshefte f�r Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dirichlet series in Banach space es_ES
dc.subject Bohr's strips of convergence es_ES
dc.subject Bohr-Bohnenblust-Hille Theorem in Banach spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Estimates for vector valued Dirichlet polynomials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00605-013-0600-4
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Defant, A.; Schwarting, U.; Sevilla Peris, P. (2014). Estimates for vector valued Dirichlet polynomials. Monatshefte f�r Mathematik. 175(1):89-116. https://doi.org/10.1007/s00605-013-0600-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00605-013-0600-4 es_ES
dc.description.upvformatpinicio 89 es_ES
dc.description.upvformatpfin 116 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 286421 es_ES
dc.identifier.eissn 1436-5081
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006) es_ES
dc.description.references Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002) es_ES
dc.description.references Bennett, G.: Inclusion mappings between $$l^{p}$$ l p spaces. J. Funct. Anal. 13, 20–27 (1973) es_ES
dc.description.references Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931) es_ES
dc.description.references Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum \frac{a_n}{n^s}$$ ∑ a n n s . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., Heft 4, 441–488 (1913) es_ES
dc.description.references Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913) es_ES
dc.description.references Carl, B.: Absolut- $$(p,\,1)$$ ( p , 1 ) -summierende identische Operatoren von $$l_{u}$$ l u in $$l_{v}$$ l v . Math. Nachr. 63, 353–360 (1974) es_ES
dc.description.references Carlson, F.: Contributions à la théorie des séries de Dirichlet. Note i. Ark. fö”r Mat., Astron. och Fys. 16(18), 1–19 (1922) es_ES
dc.description.references de la Bretèche, R.: Sur l’ordre de grandeur des polynômes de Dirichlet. Acta Arith. 134(2), 141–148 (2008) es_ES
dc.description.references Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485–497 (2011) es_ES
dc.description.references Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008) es_ES
dc.description.references Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Bohr’s strips for Dirichlet series in Banach spaces. Funct. Approx. Comment. Math. 44(part 2), 165–189 (2011) es_ES
dc.description.references Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837–2857 (2012) es_ES
dc.description.references Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220–242 (2010) es_ES
dc.description.references Defant, A., Sevilla-Peris, P.: Convergence of Dirichlet polynomials in Banach spaces. Trans. Am. Math. Soc. 363(2), 681–697 (2011) es_ES
dc.description.references Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995) es_ES
dc.description.references Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. Actualités Aci. Indust., No. 1367. Hermann, Paris (1975) es_ES
dc.description.references Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$ L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997) es_ES
dc.description.references Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985) es_ES
dc.description.references Konyagin, S.V., Queffélec, H.: The translation $$\frac{1}{2}$$ 1 2 in the theory of Dirichlet series. Real Anal. Exch. 27(1):155–175 (2001/2002) es_ES
dc.description.references Kwapień, S.: Some remarks on $$(p,\, q)$$ ( p , q ) -absolutely summing operators in $$l_{p}$$ l p -spaces. Studia Math. 29, 327–337 (1968) es_ES
dc.description.references Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, reprint of the 1991 edn. Classics in Mathematics. Springer, Berlin (2011) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979) es_ES
dc.description.references Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16, 676–692 (2010) es_ES
dc.description.references Prachar, K.: Primzahlverteilung. Springer, Berlin (1957) es_ES
dc.description.references Queffélec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995) es_ES
dc.description.references Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow (1989) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem