Mostrar el registro sencillo del ítem
dc.contributor.author | Defant, Andreas | es_ES |
dc.contributor.author | Schwarting, Ursula | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2017-04-18T09:58:16Z | |
dc.date.available | 2017-04-18T09:58:16Z | |
dc.date.issued | 2014-09 | |
dc.identifier.issn | 0026-9255 | |
dc.identifier.uri | http://hdl.handle.net/10251/79725 | |
dc.description.abstract | [EN] We estimate the -norm of finite Dirichlet polynomials with coefficients in a Banach space. Our estimates quantify several recent results on Bohr's strips of uniform but non absolute convergence of Dirichlet series in Banach spaces. | es_ES |
dc.description.sponsorship | A. Defant and P. Sevilla-Peris were supported by MICINN Project MTM2011-22417. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Monatshefte f�r Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dirichlet series in Banach space | es_ES |
dc.subject | Bohr's strips of convergence | es_ES |
dc.subject | Bohr-Bohnenblust-Hille Theorem in Banach spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Estimates for vector valued Dirichlet polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00605-013-0600-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Defant, A.; Schwarting, U.; Sevilla Peris, P. (2014). Estimates for vector valued Dirichlet polynomials. Monatshefte f�r Mathematik. 175(1):89-116. https://doi.org/10.1007/s00605-013-0600-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00605-013-0600-4 | es_ES |
dc.description.upvformatpinicio | 89 | es_ES |
dc.description.upvformatpfin | 116 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 175 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 286421 | es_ES |
dc.identifier.eissn | 1436-5081 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006) | es_ES |
dc.description.references | Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002) | es_ES |
dc.description.references | Bennett, G.: Inclusion mappings between $$l^{p}$$ l p spaces. J. Funct. Anal. 13, 20–27 (1973) | es_ES |
dc.description.references | Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931) | es_ES |
dc.description.references | Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum \frac{a_n}{n^s}$$ ∑ a n n s . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., Heft 4, 441–488 (1913) | es_ES |
dc.description.references | Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913) | es_ES |
dc.description.references | Carl, B.: Absolut- $$(p,\,1)$$ ( p , 1 ) -summierende identische Operatoren von $$l_{u}$$ l u in $$l_{v}$$ l v . Math. Nachr. 63, 353–360 (1974) | es_ES |
dc.description.references | Carlson, F.: Contributions à la théorie des séries de Dirichlet. Note i. Ark. fö”r Mat., Astron. och Fys. 16(18), 1–19 (1922) | es_ES |
dc.description.references | de la Bretèche, R.: Sur l’ordre de grandeur des polynômes de Dirichlet. Acta Arith. 134(2), 141–148 (2008) | es_ES |
dc.description.references | Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485–497 (2011) | es_ES |
dc.description.references | Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008) | es_ES |
dc.description.references | Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Bohr’s strips for Dirichlet series in Banach spaces. Funct. Approx. Comment. Math. 44(part 2), 165–189 (2011) | es_ES |
dc.description.references | Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837–2857 (2012) | es_ES |
dc.description.references | Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220–242 (2010) | es_ES |
dc.description.references | Defant, A., Sevilla-Peris, P.: Convergence of Dirichlet polynomials in Banach spaces. Trans. Am. Math. Soc. 363(2), 681–697 (2011) | es_ES |
dc.description.references | Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995) | es_ES |
dc.description.references | Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. Actualités Aci. Indust., No. 1367. Hermann, Paris (1975) | es_ES |
dc.description.references | Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$ L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997) | es_ES |
dc.description.references | Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985) | es_ES |
dc.description.references | Konyagin, S.V., Queffélec, H.: The translation $$\frac{1}{2}$$ 1 2 in the theory of Dirichlet series. Real Anal. Exch. 27(1):155–175 (2001/2002) | es_ES |
dc.description.references | Kwapień, S.: Some remarks on $$(p,\, q)$$ ( p , q ) -absolutely summing operators in $$l_{p}$$ l p -spaces. Studia Math. 29, 327–337 (1968) | es_ES |
dc.description.references | Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, reprint of the 1991 edn. Classics in Mathematics. Springer, Berlin (2011) | es_ES |
dc.description.references | Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977) | es_ES |
dc.description.references | Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979) | es_ES |
dc.description.references | Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16, 676–692 (2010) | es_ES |
dc.description.references | Prachar, K.: Primzahlverteilung. Springer, Berlin (1957) | es_ES |
dc.description.references | Queffélec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995) | es_ES |
dc.description.references | Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow (1989) | es_ES |