- -

Algebraic and topological structures on rational tangles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Algebraic and topological structures on rational tangles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Milani, Vida es_ES
dc.contributor.author Mansourbeigi, Seyed M.H. es_ES
dc.contributor.author Finizadeh, Hossein es_ES
dc.date.accessioned 2017-04-19T11:25:30Z
dc.date.available 2017-04-19T11:25:30Z
dc.date.issued 2017-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/79809
dc.description.abstract [EN] In this paper we present the construction of a group Hopf algebra on the class of rational tangles. A locally finite partial order on this class is introduced and a topology is generated. An interval coalgebra structure associated with the locally finite partial order is specified. Irrational and real tangles are introduced and their relation with rational tangles are studied. The existence of the maximal real tangle is described in detail. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Group Hopf algebra es_ES
dc.subject Locally finite partial order es_ES
dc.subject Tangle es_ES
dc.subject Pseudo-module es_ES
dc.subject Bi-pseudo-module es_ES
dc.subject Pseudo-tensor product es_ES
dc.subject Incidence algebra es_ES
dc.subject Interval coalgebra es_ES
dc.subject Continued fraction es_ES
dc.subject Tangle convergen es_ES
dc.title Algebraic and topological structures on rational tangles es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-19T11:19:34Z
dc.identifier.doi 10.4995/agt.2017.2250
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Milani, V.; Mansourbeigi, SM.; Finizadeh, H. (2017). Algebraic and topological structures on rational tangles. Applied General Topology. 18(1):1-11. https://doi.org/10.4995/agt.2017.2250 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2017.2250 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references P. Cartier, A primer of Hopf algebras, Preprint IHES (2006). es_ES
dc.description.references Darcy, I. K. (2008). Modeling protein–DNA complexes with tangles. Computers & Mathematics with Applications, 55(5), 924-937. doi:10.1016/j.camwa.2006.12.099 es_ES
dc.description.references Goldman, J. R., & Kauffman, L. H. (1997). Rational Tangles. Advances in Applied Mathematics, 18(3), 300-332. doi:10.1006/aama.1996.0511 es_ES
dc.description.references Kauffman, L. H., & Lambropoulou, S. (2002). Classifying and applying rational knots and rational tangles. Contemporary Mathematics, 223-259. doi:10.1090/conm/304/05197 es_ES
dc.description.references Kauffman, L. H., & Lambropoulou, S. (2004). On the classification of rational tangles. Advances in Applied Mathematics, 33(2), 199-237. doi:10.1016/j.aam.2003.06.002 es_ES
dc.description.references Lorentzen, L., & Waadeland, H. (2008). Continued Fractions. Atlantis Studies in Mathematics for Engineering and Science. doi:10.2991/978-94-91216-37-4 es_ES
dc.description.references Milnor, J. W., & Moore, J. C. (1965). On the Structure of Hopf Algebras. The Annals of Mathematics, 81(2), 211. doi:10.2307/1970615 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem