- -

Algebraic and topological structures on rational tangles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Algebraic and topological structures on rational tangles

Mostrar el registro completo del ítem

Milani, V.; Mansourbeigi, SM.; Finizadeh, H. (2017). Algebraic and topological structures on rational tangles. Applied General Topology. 18(1):1-11. https://doi.org/10.4995/agt.2017.2250

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79809

Ficheros en el ítem

Metadatos del ítem

Título: Algebraic and topological structures on rational tangles
Autor: Milani, Vida Mansourbeigi, Seyed M.H. Finizadeh, Hossein
Fecha difusión:
Resumen:
[EN] In this paper we present the construction of a group Hopf algebra on the class of rational tangles. A locally finite partial order on this class is introduced and a topology is generated. An interval coalgebra structure ...[+]
Palabras clave: Group Hopf algebra , Locally finite partial order , Tangle , Pseudo-module , Bi-pseudo-module , Pseudo-tensor product , Incidence algebra , Interval coalgebra , Continued fraction , Tangle convergen
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2017.2250
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2017.2250
Tipo: Artículo

References

P. Cartier, A primer of Hopf algebras, Preprint IHES (2006).

Darcy, I. K. (2008). Modeling protein–DNA complexes with tangles. Computers & Mathematics with Applications, 55(5), 924-937. doi:10.1016/j.camwa.2006.12.099

Goldman, J. R., & Kauffman, L. H. (1997). Rational Tangles. Advances in Applied Mathematics, 18(3), 300-332. doi:10.1006/aama.1996.0511 [+]
P. Cartier, A primer of Hopf algebras, Preprint IHES (2006).

Darcy, I. K. (2008). Modeling protein–DNA complexes with tangles. Computers & Mathematics with Applications, 55(5), 924-937. doi:10.1016/j.camwa.2006.12.099

Goldman, J. R., & Kauffman, L. H. (1997). Rational Tangles. Advances in Applied Mathematics, 18(3), 300-332. doi:10.1006/aama.1996.0511

Kauffman, L. H., & Lambropoulou, S. (2002). Classifying and applying rational knots and rational tangles. Contemporary Mathematics, 223-259. doi:10.1090/conm/304/05197

Kauffman, L. H., & Lambropoulou, S. (2004). On the classification of rational tangles. Advances in Applied Mathematics, 33(2), 199-237. doi:10.1016/j.aam.2003.06.002

Lorentzen, L., & Waadeland, H. (2008). Continued Fractions. Atlantis Studies in Mathematics for Engineering and Science. doi:10.2991/978-94-91216-37-4

Milnor, J. W., & Moore, J. C. (1965). On the Structure of Hopf Algebras. The Annals of Mathematics, 81(2), 211. doi:10.2307/1970615

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem