- -

Best proximity points of contractive mappings on a metric space with a graph and applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Best proximity points of contractive mappings on a metric space with a graph and applications

Show full item record

Sultana, A.; Vetrivel, V. (2017). Best proximity points of contractive mappings on a metric space with a graph and applications. Applied General Topology. 18(1):13-21. doi:10.4995/agt.2017.3424.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79810

Files in this item

Item Metadata

Title: Best proximity points of contractive mappings on a metric space with a graph and applications
Author:
Issued date:
Abstract:
[EN] We establish an existence and uniqueness theorem on best proximity point for contractive mappings on a metric space endowed with a graph. As an application of this theorem, we obtain a result on the existence of unique ...[+]
Subjects: Fixed point , Best proximity point , Contraction , Graph , Metric space , P-property
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2017.3424
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2017.3424
Thanks:
The first author is thankful to University Grants Commission F.2 − 12/2002(SA − I), New Delhi, India for the financial support.
Type: Artículo

References

Dinevari, T., & Frigon, M. (2013). Fixed point results for multivalued contractions on a metric space with a graph. Journal of Mathematical Analysis and Applications, 405(2), 507-517. doi:10.1016/j.jmaa.2013.04.014

Fan, K. (1969). Extensions of two fixed point theorems of F. E. Browder. Mathematische Zeitschrift, 112(3), 234-240. doi:10.1007/bf01110225

Jachymski, J. (2007). The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 136(04), 1359-1373. doi:10.1090/s0002-9939-07-09110-1 [+]
Dinevari, T., & Frigon, M. (2013). Fixed point results for multivalued contractions on a metric space with a graph. Journal of Mathematical Analysis and Applications, 405(2), 507-517. doi:10.1016/j.jmaa.2013.04.014

Fan, K. (1969). Extensions of two fixed point theorems of F. E. Browder. Mathematische Zeitschrift, 112(3), 234-240. doi:10.1007/bf01110225

Jachymski, J. (2007). The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 136(04), 1359-1373. doi:10.1090/s0002-9939-07-09110-1

Kim, W. K., & Lee, K. H. (2006). Existence of best proximity pairs and equilibrium pairs. Journal of Mathematical Analysis and Applications, 316(2), 433-446. doi:10.1016/j.jmaa.2005.04.053

Kim, W. K., Kum, S., & Lee, K. H. (2008). On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Analysis: Theory, Methods & Applications, 68(8), 2216-2227. doi:10.1016/j.na.2007.01.057

Kirk, W. A., Reich, S., & Veeramani, P. (2003). Proximinal Retracts and Best Proximity Pair Theorems. Numerical Functional Analysis and Optimization, 24(7-8), 851-862. doi:10.1081/nfa-120026380

Máté, L. (1993). The Hutchinson-Barnsley theory for certain non-contraction mappings. Periodica Mathematica Hungarica, 27(1), 21-33. doi:10.1007/bf01877158

Nieto, J. J., & Rodríguez-López, R. (2005). Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22(3), 223-239. doi:10.1007/s11083-005-9018-5

Pragadeeswarar, V., & Marudai, M. (2012). Best proximity points: approximation and optimization in partially ordered metric spaces. Optimization Letters, 7(8), 1883-1892. doi:10.1007/s11590-012-0529-x

Ran, A. C. M., & Reurings, M. C. B. (2004). Proceedings of the American Mathematical Society, 132(05), 1435-1444. doi:10.1090/s0002-9939-03-07220-4

Sultana, A., & Vetrivel, V. (2014). Fixed points of Mizoguchi–Takahashi contraction on a metric space with a graph and applications. Journal of Mathematical Analysis and Applications, 417(1), 336-344. doi:10.1016/j.jmaa.2014.03.015

Vetrivel, V., & Sultana, A. (2014). On the existence of best proximity points for generalized contractions. Applied General Topology, 15(1), 55. doi:10.4995/agt.2014.2221

[-]

This item appears in the following Collection(s)

Show full item record