Mostrar el registro sencillo del ítem
dc.contributor.author | Sultana, Asrifa | es_ES |
dc.contributor.author | Vetrivel, V. | es_ES |
dc.date.accessioned | 2017-04-19T11:28:29Z | |
dc.date.available | 2017-04-19T11:28:29Z | |
dc.date.issued | 2017-04-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/79810 | |
dc.description.abstract | [EN] We establish an existence and uniqueness theorem on best proximity point for contractive mappings on a metric space endowed with a graph. As an application of this theorem, we obtain a result on the existence of unique best proximity point for uniformly locally contractive mappings. Moreover, our theorem subsumes and generalizes many recent fixed point and best proximity point results. | es_ES |
dc.description.sponsorship | The first author is thankful to University Grants Commission F.2 − 12/2002(SA − I), New Delhi, India for the financial support. | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Best proximity point | es_ES |
dc.subject | Contraction | es_ES |
dc.subject | Graph | es_ES |
dc.subject | Metric space | es_ES |
dc.subject | P-property | es_ES |
dc.title | Best proximity points of contractive mappings on a metric space with a graph and applications | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-19T11:19:38Z | |
dc.identifier.doi | 10.4995/agt.2017.3424 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UGC//F.2-12%2F2002(SA-I)/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sultana, A.; Vetrivel, V. (2017). Best proximity points of contractive mappings on a metric space with a graph and applications. Applied General Topology. 18(1):13-21. https://doi.org/10.4995/agt.2017.3424 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2017.3424 | es_ES |
dc.description.upvformatpinicio | 13 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | University Grants Commission, India | |
dc.description.references | Dinevari, T., & Frigon, M. (2013). Fixed point results for multivalued contractions on a metric space with a graph. Journal of Mathematical Analysis and Applications, 405(2), 507-517. doi:10.1016/j.jmaa.2013.04.014 | es_ES |
dc.description.references | Fan, K. (1969). Extensions of two fixed point theorems of F. E. Browder. Mathematische Zeitschrift, 112(3), 234-240. doi:10.1007/bf01110225 | es_ES |
dc.description.references | Jachymski, J. (2007). The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 136(04), 1359-1373. doi:10.1090/s0002-9939-07-09110-1 | es_ES |
dc.description.references | Kim, W. K., & Lee, K. H. (2006). Existence of best proximity pairs and equilibrium pairs. Journal of Mathematical Analysis and Applications, 316(2), 433-446. doi:10.1016/j.jmaa.2005.04.053 | es_ES |
dc.description.references | Kim, W. K., Kum, S., & Lee, K. H. (2008). On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Analysis: Theory, Methods & Applications, 68(8), 2216-2227. doi:10.1016/j.na.2007.01.057 | es_ES |
dc.description.references | Kirk, W. A., Reich, S., & Veeramani, P. (2003). Proximinal Retracts and Best Proximity Pair Theorems. Numerical Functional Analysis and Optimization, 24(7-8), 851-862. doi:10.1081/nfa-120026380 | es_ES |
dc.description.references | Máté, L. (1993). The Hutchinson-Barnsley theory for certain non-contraction mappings. Periodica Mathematica Hungarica, 27(1), 21-33. doi:10.1007/bf01877158 | es_ES |
dc.description.references | Nieto, J. J., & Rodríguez-López, R. (2005). Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22(3), 223-239. doi:10.1007/s11083-005-9018-5 | es_ES |
dc.description.references | Pragadeeswarar, V., & Marudai, M. (2012). Best proximity points: approximation and optimization in partially ordered metric spaces. Optimization Letters, 7(8), 1883-1892. doi:10.1007/s11590-012-0529-x | es_ES |
dc.description.references | Ran, A. C. M., & Reurings, M. C. B. (2004). Proceedings of the American Mathematical Society, 132(05), 1435-1444. doi:10.1090/s0002-9939-03-07220-4 | es_ES |
dc.description.references | Sultana, A., & Vetrivel, V. (2014). Fixed points of Mizoguchi–Takahashi contraction on a metric space with a graph and applications. Journal of Mathematical Analysis and Applications, 417(1), 336-344. doi:10.1016/j.jmaa.2014.03.015 | es_ES |
dc.description.references | Vetrivel, V., & Sultana, A. (2014). On the existence of best proximity points for generalized contractions. Applied General Topology, 15(1), 55. doi:10.4995/agt.2014.2221 | es_ES |