- -

Best proximity points of contractive mappings on a metric space with a graph and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Best proximity points of contractive mappings on a metric space with a graph and applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sultana, Asrifa es_ES
dc.contributor.author Vetrivel, V. es_ES
dc.date.accessioned 2017-04-19T11:28:29Z
dc.date.available 2017-04-19T11:28:29Z
dc.date.issued 2017-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/79810
dc.description.abstract [EN] We establish an existence and uniqueness theorem on best proximity point for contractive mappings on a metric space endowed with a graph. As an application of this theorem, we obtain a result on the existence of unique best proximity point for uniformly locally contractive mappings. Moreover, our theorem subsumes and generalizes many recent fixed point and best proximity point results. es_ES
dc.description.sponsorship The first author is thankful to University Grants Commission F.2 − 12/2002(SA − I), New Delhi, India for the financial support.
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Best proximity point es_ES
dc.subject Contraction es_ES
dc.subject Graph es_ES
dc.subject Metric space es_ES
dc.subject P-property es_ES
dc.title Best proximity points of contractive mappings on a metric space with a graph and applications es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-19T11:19:38Z
dc.identifier.doi 10.4995/agt.2017.3424
dc.relation.projectID info:eu-repo/grantAgreement/UGC//F.2-12%2F2002(SA-I)/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sultana, A.; Vetrivel, V. (2017). Best proximity points of contractive mappings on a metric space with a graph and applications. Applied General Topology. 18(1):13-21. https://doi.org/10.4995/agt.2017.3424 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2017.3424 es_ES
dc.description.upvformatpinicio 13 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder University Grants Commission, India
dc.description.references Dinevari, T., & Frigon, M. (2013). Fixed point results for multivalued contractions on a metric space with a graph. Journal of Mathematical Analysis and Applications, 405(2), 507-517. doi:10.1016/j.jmaa.2013.04.014 es_ES
dc.description.references Fan, K. (1969). Extensions of two fixed point theorems of F. E. Browder. Mathematische Zeitschrift, 112(3), 234-240. doi:10.1007/bf01110225 es_ES
dc.description.references Jachymski, J. (2007). The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 136(04), 1359-1373. doi:10.1090/s0002-9939-07-09110-1 es_ES
dc.description.references Kim, W. K., & Lee, K. H. (2006). Existence of best proximity pairs and equilibrium pairs. Journal of Mathematical Analysis and Applications, 316(2), 433-446. doi:10.1016/j.jmaa.2005.04.053 es_ES
dc.description.references Kim, W. K., Kum, S., & Lee, K. H. (2008). On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Analysis: Theory, Methods & Applications, 68(8), 2216-2227. doi:10.1016/j.na.2007.01.057 es_ES
dc.description.references Kirk, W. A., Reich, S., & Veeramani, P. (2003). Proximinal Retracts and Best Proximity Pair Theorems. Numerical Functional Analysis and Optimization, 24(7-8), 851-862. doi:10.1081/nfa-120026380 es_ES
dc.description.references Máté, L. (1993). The Hutchinson-Barnsley theory for certain non-contraction mappings. Periodica Mathematica Hungarica, 27(1), 21-33. doi:10.1007/bf01877158 es_ES
dc.description.references Nieto, J. J., & Rodríguez-López, R. (2005). Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22(3), 223-239. doi:10.1007/s11083-005-9018-5 es_ES
dc.description.references Pragadeeswarar, V., & Marudai, M. (2012). Best proximity points: approximation and optimization in partially ordered metric spaces. Optimization Letters, 7(8), 1883-1892. doi:10.1007/s11590-012-0529-x es_ES
dc.description.references Ran, A. C. M., & Reurings, M. C. B. (2004). Proceedings of the American Mathematical Society, 132(05), 1435-1444. doi:10.1090/s0002-9939-03-07220-4 es_ES
dc.description.references Sultana, A., & Vetrivel, V. (2014). Fixed points of Mizoguchi–Takahashi contraction on a metric space with a graph and applications. Journal of Mathematical Analysis and Applications, 417(1), 336-344. doi:10.1016/j.jmaa.2014.03.015 es_ES
dc.description.references Vetrivel, V., & Sultana, A. (2014). On the existence of best proximity points for generalized contractions. Applied General Topology, 15(1), 55. doi:10.4995/agt.2014.2221 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem