- -

Non metrizable topologies on Z with countable dual group

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non metrizable topologies on Z with countable dual group

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrera Mayoral, Daniel de la es_ES
dc.date.accessioned 2017-04-19T11:44:53Z
dc.date.available 2017-04-19T11:44:53Z
dc.date.issued 2017-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/79812
dc.description.abstract [EN] In this paper we give two families of non-metrizable topologies on the group of the integers having a countable dual group which is isomorphic to a infinite torsion subgroup of the unit circle in the complex plane. Both families are related to D-sequences, which are sequences of natural numbers such that each term divides the following. The first family consists of locally quasi-convex group topologies. The second consists of complete topologies which are not locally quasi-convex. In order to study the dual groups for both families we need to make numerical considerations of independent interest. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Locally quasi-convex topology es_ES
dc.subject D-sequence es_ES
dc.subject Continuous character es_ES
dc.subject Infinite torsion subgroups of T es_ES
dc.title Non metrizable topologies on Z with countable dual group es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-19T11:19:56Z
dc.identifier.doi 10.4995/agt.2017.4469
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Barrera Mayoral, DDL. (2017). Non metrizable topologies on Z with countable dual group. Applied General Topology. 18(1):31-44. https://doi.org/10.4995/agt.2017.4469 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2017.4469 es_ES
dc.description.upvformatpinicio 31 es_ES
dc.description.upvformatpfin 44 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references Außenhofer, L., & de la Barrera Mayoral, D. (2012). Linear topologies on <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi mathvariant=«double-struck»>Z</mml:mi></mml:math> are not Mackey topologies. Journal of Pure and Applied Algebra, 216(6), 1340-1347. doi:10.1016/j.jpaa.2012.01.005 es_ES
dc.description.references Außenhofer, L., de la Barrera Mayoral, D., Dikranjan, D., & Martín-Peinador, E. (2016). «Varopoulos paradigm»: Mackey property versus metrizability in topological groups. Revista Matemática Complutense, 30(1), 167-184. doi:10.1007/s13163-016-0209-y es_ES
dc.description.references Außenhofer, L., Dikranjan, D., & Martín-Peinador, E. (2015). Locally Quasi-Convex Compatible Topologies on a Topological Group. Axioms, 4(4), 436-458. doi:10.3390/axioms4040436 es_ES
dc.description.references De la Barrera Mayoral, D. (2014). Q is not a Mackey group. Topology and its Applications, 178, 265-275. doi:10.1016/j.topol.2014.10.004 es_ES
dc.description.references Dikranjan, D., Gabriyelyan, S. S., & Tarieladze, V. (2014). Characterizing sequences for precompact group topologies. Journal of Mathematical Analysis and Applications, 412(1), 505-519. doi:10.1016/j.jmaa.2013.10.047 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem