Mostrar el registro sencillo del ítem
dc.contributor.author | Barrera Mayoral, Daniel de la | es_ES |
dc.date.accessioned | 2017-04-19T11:44:53Z | |
dc.date.available | 2017-04-19T11:44:53Z | |
dc.date.issued | 2017-04-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/79812 | |
dc.description.abstract | [EN] In this paper we give two families of non-metrizable topologies on the group of the integers having a countable dual group which is isomorphic to a infinite torsion subgroup of the unit circle in the complex plane. Both families are related to D-sequences, which are sequences of natural numbers such that each term divides the following. The first family consists of locally quasi-convex group topologies. The second consists of complete topologies which are not locally quasi-convex. In order to study the dual groups for both families we need to make numerical considerations of independent interest. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Locally quasi-convex topology | es_ES |
dc.subject | D-sequence | es_ES |
dc.subject | Continuous character | es_ES |
dc.subject | Infinite torsion subgroups of T | es_ES |
dc.title | Non metrizable topologies on Z with countable dual group | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-19T11:19:56Z | |
dc.identifier.doi | 10.4995/agt.2017.4469 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Barrera Mayoral, DDL. (2017). Non metrizable topologies on Z with countable dual group. Applied General Topology. 18(1):31-44. https://doi.org/10.4995/agt.2017.4469 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2017.4469 | es_ES |
dc.description.upvformatpinicio | 31 | es_ES |
dc.description.upvformatpfin | 44 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Außenhofer, L., & de la Barrera Mayoral, D. (2012). Linear topologies on <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi mathvariant=«double-struck»>Z</mml:mi></mml:math> are not Mackey topologies. Journal of Pure and Applied Algebra, 216(6), 1340-1347. doi:10.1016/j.jpaa.2012.01.005 | es_ES |
dc.description.references | Außenhofer, L., de la Barrera Mayoral, D., Dikranjan, D., & Martín-Peinador, E. (2016). «Varopoulos paradigm»: Mackey property versus metrizability in topological groups. Revista Matemática Complutense, 30(1), 167-184. doi:10.1007/s13163-016-0209-y | es_ES |
dc.description.references | Außenhofer, L., Dikranjan, D., & Martín-Peinador, E. (2015). Locally Quasi-Convex Compatible Topologies on a Topological Group. Axioms, 4(4), 436-458. doi:10.3390/axioms4040436 | es_ES |
dc.description.references | De la Barrera Mayoral, D. (2014). Q is not a Mackey group. Topology and its Applications, 178, 265-275. doi:10.1016/j.topol.2014.10.004 | es_ES |
dc.description.references | Dikranjan, D., Gabriyelyan, S. S., & Tarieladze, V. (2014). Characterizing sequences for precompact group topologies. Journal of Mathematical Analysis and Applications, 412(1), 505-519. doi:10.1016/j.jmaa.2013.10.047 | es_ES |