Abdou, A. A. N., Je Cho, Y., & Saadati, R. (2015). Distance type and common fixed point theorems in Menger probabilistic metric type spaces. Applied Mathematics and Computation, 265, 1145-1154. doi:10.1016/j.amc.2015.05.052
Arvanitakis, A. D. (2003). A proof of the Generalized Banach Contraction Conjecture. Proceedings of the American Mathematical Society, 131(12), 3647-3656. doi:10.1090/s0002-9939-03-06937-5
A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
[+]
Abdou, A. A. N., Je Cho, Y., & Saadati, R. (2015). Distance type and common fixed point theorems in Menger probabilistic metric type spaces. Applied Mathematics and Computation, 265, 1145-1154. doi:10.1016/j.amc.2015.05.052
Arvanitakis, A. D. (2003). A proof of the Generalized Banach Contraction Conjecture. Proceedings of the American Mathematical Society, 131(12), 3647-3656. doi:10.1090/s0002-9939-03-06937-5
A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133-181.
V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3-9.
Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11.
Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5
Khojasteh, F., Shukla, S., & Radenovic, S. (2015). A new approach to the study of fixed point theory for simulation functions. Filomat, 29(6), 1189-1194. doi:10.2298/fil1506189k
Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4
Rhoades, B. E. (2001). Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods & Applications, 47(4), 2683-2693. doi:10.1016/s0362-546x(01)00388-1
Roldán-López-de-Hierro, A.-F., Karapınar, E., Roldán-López-de-Hierro, C., & Martínez-Moreno, J. (2015). Coincidence point theorems on metric spaces via simulation functions. Journal of Computational and Applied Mathematics, 275, 345-355. doi:10.1016/j.cam.2014.07.011
Shioji, N., Suzuki, T., & Takahashi, W. (1998). Proceedings of the American Mathematical Society, 126(10), 3117-3125. doi:10.1090/s0002-9939-98-04605-x
[-]