- -

Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance

Show simple item record

Files in this item

dc.contributor.author Mongkolkeha, Chirasak es_ES
dc.contributor.author Cho, Yeol Je es_ES
dc.contributor.author Kumam, Poom es_ES
dc.date.accessioned 2017-04-19T12:04:35Z
dc.date.available 2017-04-19T12:04:35Z
dc.date.issued 2017-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/79817
dc.description.abstract [EN] The purpose of this article is to prove some fixed point theorems for simulation functions in complete b-metric spaces with partially ordered by using wt-distance which introduced by Hussain et al. Also, we give some examples to illustrate our main results. es_ES
dc.description.sponsorship This project was supported by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty of Science, KMUTT. The first author was supported by Thailand Research Fund (Grant No. TRG5880221) and Kasetsart University Research and Development Institute (KURDI). Also, Yeol Je Cho was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014R1A2A2A01002100). The authors are also grateful to the referee by several useful suggestions that have improved the first version of the paper.
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation TRF/TRG5880221
dc.relation NRF/2014R1A2A2A01002100
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Simulation function es_ES
dc.subject b-metric space es_ES
dc.subject wt-distance es_ES
dc.subject w-distance es_ES
dc.subject Generalized distance es_ES
dc.title Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-19T11:19:48Z
dc.identifier.doi 10.4995/agt.2017.6322
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mongkolkeha, C.; Cho, YJ.; Kumam, P. (2017). Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance. Applied General Topology. 18(1):91-105. https://doi.org/10.4995/agt.2017.6322 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2017.6322 es_ES
dc.description.upvformatpinicio 91 es_ES
dc.description.upvformatpfin 105 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder King Mongkut's University of Technology Thonburi
dc.contributor.funder Thailand Research Fund
dc.contributor.funder Kasetsart University Research and Development Institute
dc.contributor.funder National Research Foundation of Korea
dc.relation.references Abdou, A. A. N., Je Cho, Y., & Saadati, R. (2015). Distance type and common fixed point theorems in Menger probabilistic metric type spaces. Applied Mathematics and Computation, 265, 1145-1154. doi:10.1016/j.amc.2015.05.052 es_ES
dc.relation.references Arvanitakis, A. D. (2003). A proof of the Generalized Banach Contraction Conjecture. Proceedings of the American Mathematical Society, 131(12), 3647-3656. doi:10.1090/s0002-9939-03-06937-5 es_ES
dc.relation.references A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37. es_ES
dc.relation.references S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133-181. es_ES
dc.relation.references V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3-9. es_ES
dc.relation.references Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075 es_ES
dc.relation.references S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. es_ES
dc.relation.references Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5 es_ES
dc.relation.references Khojasteh, F., Shukla, S., & Radenovic, S. (2015). A new approach to the study of fixed point theory for simulation functions. Filomat, 29(6), 1189-1194. doi:10.2298/fil1506189k es_ES
dc.relation.references Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4 es_ES
dc.relation.references Rhoades, B. E. (2001). Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods & Applications, 47(4), 2683-2693. doi:10.1016/s0362-546x(01)00388-1 es_ES
dc.relation.references Roldán-López-de-Hierro, A.-F., Karapınar, E., Roldán-López-de-Hierro, C., & Martínez-Moreno, J. (2015). Coincidence point theorems on metric spaces via simulation functions. Journal of Computational and Applied Mathematics, 275, 345-355. doi:10.1016/j.cam.2014.07.011 es_ES
dc.relation.references Shioji, N., Suzuki, T., & Takahashi, W. (1998). Proceedings of the American Mathematical Society, 126(10), 3117-3125. doi:10.1090/s0002-9939-98-04605-x es_ES


This item appears in the following Collection(s)

Show simple item record