Mostrar el registro sencillo del ítem
dc.contributor.author | Mongkolkeha, Chirasak | es_ES |
dc.contributor.author | Cho, Yeol Je | es_ES |
dc.contributor.author | Kumam, Poom | es_ES |
dc.date.accessioned | 2017-04-19T12:04:35Z | |
dc.date.available | 2017-04-19T12:04:35Z | |
dc.date.issued | 2017-04-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/79817 | |
dc.description.abstract | [EN] The purpose of this article is to prove some fixed point theorems for simulation functions in complete b-metric spaces with partially ordered by using wt-distance which introduced by Hussain et al. Also, we give some examples to illustrate our main results. | es_ES |
dc.description.sponsorship | This project was supported by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty of Science, KMUTT. The first author was supported by Thailand Research Fund (Grant No. TRG5880221) and Kasetsart University Research and Development Institute (KURDI). Also, Yeol Je Cho was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014R1A2A2A01002100). The authors are also grateful to the referee by several useful suggestions that have improved the first version of the paper. | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Simulation function | es_ES |
dc.subject | b-metric space | es_ES |
dc.subject | wt-distance | es_ES |
dc.subject | w-distance | es_ES |
dc.subject | Generalized distance | es_ES |
dc.title | Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-19T11:19:48Z | |
dc.identifier.doi | 10.4995/agt.2017.6322 | |
dc.relation.projectID | info:eu-repo/grantAgreement/TRF//TRG5880221/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/NRF//2014R1A2A2A01002100/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Mongkolkeha, C.; Cho, YJ.; Kumam, P. (2017). Fixed point theorems for simulation functions in $\mbox{b}$-metric spaces via the $wt$-distance. Applied General Topology. 18(1):91-105. https://doi.org/10.4995/agt.2017.6322 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2017.6322 | es_ES |
dc.description.upvformatpinicio | 91 | es_ES |
dc.description.upvformatpfin | 105 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | King Mongkut's University of Technology Thonburi | |
dc.contributor.funder | Thailand Research Fund | |
dc.contributor.funder | Kasetsart University Research and Development Institute | |
dc.contributor.funder | National Research Foundation of Korea | |
dc.description.references | Abdou, A. A. N., Je Cho, Y., & Saadati, R. (2015). Distance type and common fixed point theorems in Menger probabilistic metric type spaces. Applied Mathematics and Computation, 265, 1145-1154. doi:10.1016/j.amc.2015.05.052 | es_ES |
dc.description.references | Arvanitakis, A. D. (2003). A proof of the Generalized Banach Contraction Conjecture. Proceedings of the American Mathematical Society, 131(12), 3647-3656. doi:10.1090/s0002-9939-03-06937-5 | es_ES |
dc.description.references | A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37. | es_ES |
dc.description.references | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133-181. | es_ES |
dc.description.references | V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3-9. | es_ES |
dc.description.references | Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075 | es_ES |
dc.description.references | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. | es_ES |
dc.description.references | Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5 | es_ES |
dc.description.references | Khojasteh, F., Shukla, S., & Radenovic, S. (2015). A new approach to the study of fixed point theory for simulation functions. Filomat, 29(6), 1189-1194. doi:10.2298/fil1506189k | es_ES |
dc.description.references | Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4 | es_ES |
dc.description.references | Rhoades, B. E. (2001). Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods & Applications, 47(4), 2683-2693. doi:10.1016/s0362-546x(01)00388-1 | es_ES |
dc.description.references | Roldán-López-de-Hierro, A.-F., Karapınar, E., Roldán-López-de-Hierro, C., & Martínez-Moreno, J. (2015). Coincidence point theorems on metric spaces via simulation functions. Journal of Computational and Applied Mathematics, 275, 345-355. doi:10.1016/j.cam.2014.07.011 | es_ES |
dc.description.references | Shioji, N., Suzuki, T., & Takahashi, W. (1998). Proceedings of the American Mathematical Society, 126(10), 3117-3125. doi:10.1090/s0002-9939-98-04605-x | es_ES |