- -

Transitions between 4-intersection values of planar regions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Transitions between 4-intersection values of planar regions

Show full item record

Bell, K.; Richmond, T. (2017). Transitions between 4-intersection values of planar regions. Applied General Topology. 18(1):183-202. doi:10.4995/agt.2017.6716.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79824

Files in this item

Item Metadata

Title: Transitions between 4-intersection values of planar regions
Author: Bell, Kathleen Richmond, Tom
Issued date:
Abstract:
[EN] If A(t) and B(t) are subsets of the Euclidean plane which are continuously morphing, we investigate the question of whether they may morph directly from being disjoint to overlapping so that the boundary and interior ...[+]
Subjects: Upper semicontinuous , Lower semicontinuous , Vietoris topology , Spatial region , 4-intersection value
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2017.6716
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2017.6716
Type: Artículo

References

C. Adams and R. Franzosa, Introduction to Topology: Pure and Applied, Pearson Prentice Hall, Upper Saddle River, NJ, 2008.

Chen, J., Li, C., Li, Z., & Gold, C. (2001). A Voronoi-based 9-intersection model for spatial relations. International Journal of Geographical Information Science, 15(3), 201-220. doi:10.1080/13658810151072831

Clementini, E., Sharma, J., & Egenhofer, M. J. (1994). Modelling topological spatial relations: Strategies for query processing. Computers & Graphics, 18(6), 815-822. doi:10.1016/0097-8493(94)90007-8 [+]
C. Adams and R. Franzosa, Introduction to Topology: Pure and Applied, Pearson Prentice Hall, Upper Saddle River, NJ, 2008.

Chen, J., Li, C., Li, Z., & Gold, C. (2001). A Voronoi-based 9-intersection model for spatial relations. International Journal of Geographical Information Science, 15(3), 201-220. doi:10.1080/13658810151072831

Clementini, E., Sharma, J., & Egenhofer, M. J. (1994). Modelling topological spatial relations: Strategies for query processing. Computers & Graphics, 18(6), 815-822. doi:10.1016/0097-8493(94)90007-8

Egenhofer, M. J., & Al-Taha, K. K. (1992). Reasoning about gradual changes of topological relationships. Lecture Notes in Computer Science, 196-219. doi:10.1007/3-540-55966-3_12

Egenhofer‡, M. J., Clementini, E., & di Felice, P. (1994). Research Paper. International journal of geographical information systems, 8(2), 129-142. doi:10.1080/02693799408901990

EGENHOFER, M. J., & FRANZOSA, R. D. (1991). Point-set topological spatial relations. International journal of geographical information systems, 5(2), 161-174. doi:10.1080/02693799108927841

M. Egenhofer and R. Franzosa, On equivalence of topological relations, International Journal for Geographical Information Systems 8, no. 6 (1994), 133-152. https://doi.org/10.1016/0022-247X(85)90246-X

Francaviglia, S., Lechicki, A., & Levi, S. (1985). Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions. Journal of Mathematical Analysis and Applications, 112(2), 347-370. doi:10.1016/0022-247x(85)90246-x

Nedas, K. A., Egenhofer, M. J., & Wilmsen, D. (2007). Metric details of topological line–line relations. International Journal of Geographical Information Science, 21(1), 21-48. doi:10.1080/13658810600852164

Roy, A. J., & Stell, J. G. (2001). Spatial relations between indeterminate regions. International Journal of Approximate Reasoning, 27(3), 205-234. doi:10.1016/s0888-613x(01)00033-0

SMITH, T. R., & PARK, K. K. (1992). Algebraic approach to spatial reasoning. International journal of geographical information systems, 6(3), 177-192. doi:10.1080/02693799208901904

[-]

This item appears in the following Collection(s)

Show full item record