- -

Transitions between 4-intersection values of planar regions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Transitions between 4-intersection values of planar regions

Show simple item record

Files in this item

dc.contributor.author Bell, Kathleen es_ES
dc.contributor.author Richmond, Tom es_ES
dc.date.accessioned 2017-04-19T12:24:23Z
dc.date.available 2017-04-19T12:24:23Z
dc.date.issued 2017-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/79824
dc.description.abstract [EN] If A(t) and B(t) are subsets of the Euclidean plane which are continuously morphing, we investigate the question of whether they may morph directly from being disjoint to overlapping so that the boundary and interior of A(t) both intersect the boundary and interior of B(t) without first passing through a state in which only their boundaries intersect. More generally, we consider which 4-intersection values---binary 4-tuples specifying whether the boundary and interior of A(t) intersect the boundary and interior of B(t)---are adjacent to which in the sense that one may morph into the other without passing through a third value. The answers depend on what forms the regions A(t) and B(t) are allowed to assume and on the definition of continuous morphing of the sets. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Upper semicontinuous es_ES
dc.subject Lower semicontinuous es_ES
dc.subject Vietoris topology es_ES
dc.subject Spatial region es_ES
dc.subject 4-intersection value es_ES
dc.title Transitions between 4-intersection values of planar regions es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-19T11:20:10Z
dc.identifier.doi 10.4995/agt.2017.6716
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bell, K.; Richmond, T. (2017). Transitions between 4-intersection values of planar regions. Applied General Topology. 18(1):183-202. doi:10.4995/agt.2017.6716. es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2017.6716 es_ES
dc.description.upvformatpinicio 183 es_ES
dc.description.upvformatpfin 202 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.relation.references C. Adams and R. Franzosa, Introduction to Topology: Pure and Applied, Pearson Prentice Hall, Upper Saddle River, NJ, 2008. es_ES
dc.relation.references Chen, J., Li, C., Li, Z., & Gold, C. (2001). A Voronoi-based 9-intersection model for spatial relations. International Journal of Geographical Information Science, 15(3), 201-220. doi:10.1080/13658810151072831 es_ES
dc.relation.references Clementini, E., Sharma, J., & Egenhofer, M. J. (1994). Modelling topological spatial relations: Strategies for query processing. Computers & Graphics, 18(6), 815-822. doi:10.1016/0097-8493(94)90007-8 es_ES
dc.relation.references Egenhofer, M. J., & Al-Taha, K. K. (1992). Reasoning about gradual changes of topological relationships. Lecture Notes in Computer Science, 196-219. doi:10.1007/3-540-55966-3_12 es_ES
dc.relation.references Egenhofer‡, M. J., Clementini, E., & di Felice, P. (1994). Research Paper. International journal of geographical information systems, 8(2), 129-142. doi:10.1080/02693799408901990 es_ES
dc.relation.references EGENHOFER, M. J., & FRANZOSA, R. D. (1991). Point-set topological spatial relations. International journal of geographical information systems, 5(2), 161-174. doi:10.1080/02693799108927841 es_ES
dc.relation.references M. Egenhofer and R. Franzosa, On equivalence of topological relations, International Journal for Geographical Information Systems 8, no. 6 (1994), 133-152. https://doi.org/10.1016/0022-247X(85)90246-X es_ES
dc.relation.references Francaviglia, S., Lechicki, A., & Levi, S. (1985). Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions. Journal of Mathematical Analysis and Applications, 112(2), 347-370. doi:10.1016/0022-247x(85)90246-x es_ES
dc.relation.references Nedas, K. A., Egenhofer, M. J., & Wilmsen, D. (2007). Metric details of topological line–line relations. International Journal of Geographical Information Science, 21(1), 21-48. doi:10.1080/13658810600852164 es_ES
dc.relation.references Roy, A. J., & Stell, J. G. (2001). Spatial relations between indeterminate regions. International Journal of Approximate Reasoning, 27(3), 205-234. doi:10.1016/s0888-613x(01)00033-0 es_ES
dc.relation.references SMITH, T. R., & PARK, K. K. (1992). Algebraic approach to spatial reasoning. International journal of geographical information systems, 6(3), 177-192. doi:10.1080/02693799208901904 es_ES


This item appears in the following Collection(s)

Show simple item record