- -

Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López de Dicastillo Bergamo, Ana Carolina es_ES
dc.contributor.author Pezo, Davinson es_ES
dc.contributor.author Nerín, Cristina es_ES
dc.contributor.author López Carballo, Gracia es_ES
dc.contributor.author Catalá, Ramón es_ES
dc.contributor.author GAVARA CLEMENTE, RAFAEL es_ES
dc.contributor.author Hernandez Muñoz, Maria Pilar es_ES
dc.date.accessioned 2017-04-20T07:04:06Z
dc.date.available 2017-04-20T07:04:06Z
dc.date.issued 2012-12
dc.identifier.issn 0894-3214
dc.identifier.uri http://hdl.handle.net/10251/79837
dc.description.abstract [EN] The development of antioxidant active packaging systems is attracting considerable attention as one of the preferred emerging technologies for reducing the incidence of lipid peroxidation. This work presents the use of ethylene vinyl alcohol copolymer films containing two natural flavonoids, catechin and quercetin, to reduce the oxidation of food. In a series of experiments, these materials showed their ability to reduce the presence of hydroxyl radicals in the package headspace. Packaging fried peanuts in bags manufactured with these active films resulted in a large reduction in the presence of hexanal, a compound produced during peroxidation of the unsaturated fat in peanuts. The results indicated that the materials actively reduced the presence of radical oxidative species although the antioxidants are not released into the food. On exposing sunflower oil to the films, the peroxide values obtained showed that the films actively protected the oil; because of the higher solubility of quercetin in this food product as well as the higher antioxidant capacity, the samples containing this flavonoid were more efficient. Industrial relevance: Active packaging is receiving considerable attention as an emerging technology that can be used to improve the quality and the stability of food, reducing the direct addition of chemicals and the need for changes in formulation. The results of this study show that it is possible to reduce food oxidation without adding antioxidants to the food. The films obtained can be used to protect any type of food, including dry or fatty products. Copyright (c) 2012 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Spanish Ministry of Science and Innovation, projects AGL2006-02176, AGL2009-08776 and Fun-C-Food CSD2007-00063, and the C. L-d-D fellowship (FPU programme). Mary Georgina Hardinge provided assistance with English-language editing.
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Packaging Technology and Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antioxidant; es_ES
dc.subject Active packaging es_ES
dc.subject Quercetin es_ES
dc.subject Catechin es_ES
dc.subject EVOH es_ES
dc.subject Radical species es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pts.992
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-08776/ES/Nuevos Sistemas De Envasado Activo Alimentario Basados En Materiales Polimericos O Hibridos Con Capacidad Para La Liberacion Controlada Y Sostenida De Agentes Activos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2006-02176/ES/MATERIALES POLIMERICOS HIDROFILICOS CON CAPACIDAD PARA LA LIBERACION O RETENCION DE COMPUESTOS ACTIVOS. DESARROLLO Y CARACTERIZACION DE SU EFECTIVIDAD COMO MATERIALES PARA EL ENVASADO ACTIVO DE ALIME/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00063/ES/Nuevos Ingredientes de Alimentos Funcionales para Mejorar la Salud/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Agroquímica y Tecnologia de Alimentos - Institut d'Agroquímica i Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation López De Dicastillo Bergamo, AC.; Pezo, D.; Nerín, C.; López Carballo, G.; Catalá, R.; Gavara Clemente, R.; Hernandez Muñoz, MP. (2012). Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids. Packaging Technology and Science. 25(8):457-466. https://doi.org/10.1002/pts.992 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/pts.992 es_ES
dc.description.upvformatpinicio 457 es_ES
dc.description.upvformatpfin 466 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 231348 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia
dc.description.references Martín-Diana, A. B., Rico, D., & Barry-Ryan, C. (2008). Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce. Innovative Food Science & Emerging Technologies, 9(4), 593-603. doi:10.1016/j.ifset.2008.04.001 es_ES
dc.description.references Rooney, M. L. (Ed.). (1995). Active Food Packaging. doi:10.1007/978-1-4615-2175-4 es_ES
dc.description.references López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International, 20(4), 357-387. doi:10.1081/fri-200033462 es_ES
dc.description.references Moore, M. E., Han, I. Y., Acton, J. C., Ogale, A. A., Barmore, C. R., & Dawson, P. L. (2003). Effects of Antioxidants in Polyethylene Film on Fresh Beef Color. Journal of Food Science, 68(1), 99-104. doi:10.1111/j.1365-2621.2003.tb14122.x es_ES
dc.description.references Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10(2), 222-227. doi:10.1016/j.ifset.2008.11.010 es_ES
dc.description.references Nerín, C., Tovar, L., Djenane, D., Camo, J., Salafranca, J., Beltrán, J. A., & Roncalés, P. (2006). Stabilization of Beef Meat by a New Active Packaging Containing Natural Antioxidants. Journal of Agricultural and Food Chemistry, 54(20), 7840-7846. doi:10.1021/jf060775c es_ES
dc.description.references Nerín, C., Tovar, L., & Salafranca, J. (2008). Behaviour of a new antioxidant active film versus oxidizable model compounds. Journal of Food Engineering, 84(2), 313-320. doi:10.1016/j.jfoodeng.2007.05.027 es_ES
dc.description.references Wessling, C., Nielsen, T., Leufvén, A., & Jägerstad, M. (1998). Mobility of α‐tocopherol and BHT in LDPE in contact with fatty food simulants. Food Additives and Contaminants, 15(6), 709-715. doi:10.1080/02652039809374701 es_ES
dc.description.references LaCoste, A., Schaich, K. M., Zumbrunnen, D., & Yam, K. L. (2005). Advancing controlled release packaging through smart blending. Packaging Technology and Science, 18(2), 77-87. doi:10.1002/pts.675 es_ES
dc.description.references Pereira de Abreu, D. A., Paseiro Losada, P., Maroto, J., & Cruz, J. M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Science & Emerging Technologies, 12(1), 50-55. doi:10.1016/j.ifset.2010.12.006 es_ES
dc.description.references Peltzer, M., Wagner, J., & Jiménez, A. (2009). Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Additives & Contaminants: Part A, 26(6), 938-946. doi:10.1080/02652030802712681 es_ES
dc.description.references Granda-Restrepo, D. M., Soto-Valdez, H., Peralta, E., Troncoso-Rojas, R., Vallejo-Córdoba, B., Gámez-Meza, N., & Graciano-Verdugo, A. Z. (2009). Migration of α-tocopherol from an active multilayer film into whole milk powder. Food Research International, 42(10), 1396-1402. doi:10.1016/j.foodres.2009.07.007 es_ES
dc.description.references Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. A. (2009). Effect of adding citrus waste water, thyme and oregano essential oil on the chemical, physical and sensory characteristics of a bologna sausage. Innovative Food Science & Emerging Technologies, 10(4), 655-660. doi:10.1016/j.ifset.2009.06.001 es_ES
dc.description.references Konsoula, Z., & Liakopoulou-Kyriakides, M. (2010). Effect of endogenous antioxidants of sesame seeds and sesame oil to the thermal stability of edible vegetable oils. LWT - Food Science and Technology, 43(9), 1379-1386. doi:10.1016/j.lwt.2010.04.016 es_ES
dc.description.references Yanishlieva, N. V., Marinova, E. M., Gordon, M. H., & Raneva, V. G. (1999). Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 64(1), 59-66. doi:10.1016/s0308-8146(98)00086-7 es_ES
dc.description.references Pedrielli, P., Pedulli, G. F., & Skibsted, L. H. (2001). Antioxidant Mechanism of Flavonoids. Solvent Effect on Rate Constant for Chain-Breaking Reaction of Quercetin and Epicatechin in Autoxidation of Methyl Linoleate. Journal of Agricultural and Food Chemistry, 49(6), 3034-3040. doi:10.1021/jf010017g es_ES
dc.description.references Boots, A. W., Haenen, G. R. M. M., & Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. European Journal of Pharmacology, 585(2-3), 325-337. doi:10.1016/j.ejphar.2008.03.008 es_ES
dc.description.references Garces O Nerin C Beltran JA Roncales P Antioxidant active varnish Patent EP1477519 2004 es_ES
dc.description.references Pekkarinen, S. S., Heinonen, I. M., & Hopia, A. I. (1999). Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. Journal of the Science of Food and Agriculture, 79(4), 499-506. doi:10.1002/(sici)1097-0010(19990315)79:4<499::aid-jsfa204>3.0.co;2-u es_ES
dc.description.references López-de-Dicastillo, C., Alonso, J. M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Improving the Antioxidant Protection of Packaged Food by Incorporating Natural Flavonoids into Ethylene−Vinyl Alcohol Copolymer (EVOH) Films. Journal of Agricultural and Food Chemistry, 58(20), 10958-10964. doi:10.1021/jf1022324 es_ES
dc.description.references López-Rubio, A., Lagaron, J. M., Giménez, E., Cava, D., Hernandez-Muñoz, P., Yamamoto, T., & Gavara, R. (2003). Morphological Alterations Induced by Temperature and Humidity in Ethylene−Vinyl Alcohol Copolymers. Macromolecules, 36(25), 9467-9476. doi:10.1021/ma035346j es_ES
dc.description.references Aucejo, S., Catalá, R., & Gavara, R. (2000). Interactions between water and EVOH food packaging films / Interacciones entre el agua y películas de EVOH para el envasado de alimentos. Food Science and Technology International, 6(2), 159-164. doi:10.1177/108201320000600211 es_ES
dc.description.references Aucejo, S., Marco, C., & Gavara, R. (1999). Water effect on the morphology of EVOH copolymers. Journal of Applied Polymer Science, 74(5), 1201-1206. doi:10.1002/(sici)1097-4628(19991031)74:5<1201::aid-app17>3.0.co;2-8 es_ES
dc.description.references Pezo, D., Salafranca, J., & Nerín, C. (2008). Determination of the antioxidant capacity of active food packagings by in situ gas-phase hydroxyl radical generation and high-performance liquid chromatography–fluorescence detection. Journal of Chromatography A, 1178(1-2), 126-133. doi:10.1016/j.chroma.2007.11.062 es_ES
dc.description.references Pezo, D., Salafranca, J., & Nerín, C. (2006). Design of a method for generation of gas-phase hydroxyl radicals, and use of HPLC with fluorescence detection to assess the antioxidant capacity of natural essential oils. Analytical and Bioanalytical Chemistry, 385(7), 1241-1246. doi:10.1007/s00216-006-0395-4 es_ES
dc.description.references Saran, M., & Summer, K. H. (1999). Assaying for hydroxyl radicals: Hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radical Research, 31(5), 429-436. doi:10.1080/10715769900300991 es_ES
dc.description.references Pastorelli, S., Valzacchi, S., Rodriguez, A., & Simoneau, C. (2006). Solid-phase microextraction method for the determination of hexanal in hazelnuts as an indicator of the interaction of active packaging materials with food aroma compounds. Food Additives and Contaminants, 23(11), 1236-1241. doi:10.1080/02652030600778744 es_ES
dc.description.references Han, J. H., Hwang, H.-M., Min, S., & Krochta, J. M. (2008). Coating of Peanuts with Edible Whey Protein Film Containing α-Tocopherol and Ascorbyl Palmitate. Journal of Food Science, 73(8), E349-E355. doi:10.1111/j.1750-3841.2008.00910.x es_ES
dc.description.references Librando, V., & Tringali, G. (2005). Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of α-pinene degradation and secondary organic aerosol formation. Journal of Environmental Management, 75(3), 275-282. doi:10.1016/j.jenvman.2005.01.001 es_ES
dc.description.references Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82(2), 291-295. doi:10.1113/expphysiol.1997.sp004024 es_ES
dc.description.references Salmon, R. A., Schiller, C. L., & Harris, G. W. (2004). Evaluation of the Salicylic Acid–Liquid Phase Scrubbing Technique to Monitor Atmospheric Hydroxyl Radicals. Journal of Atmospheric Chemistry, 48(1), 81-104. doi:10.1023/b:joch.0000034516.95400.c3 es_ES
dc.description.references Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. Journal of Physical and Chemical Reference Data, 24(2), 663-677. doi:10.1063/1.555965 es_ES
dc.description.references Higdon, J. V., & Frei, B. (2003). Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1), 89-143. doi:10.1080/10408690390826464 es_ES
dc.description.references Burroni, L. V., Grosso, N. R., & Guzmán, C. A. (1997). Principal Volatile Components of Raw, Roasted, and Fried Argentinean Peanut Flavors. Journal of Agricultural and Food Chemistry, 45(8), 3190-3192. doi:10.1021/jf9700034 es_ES
dc.description.references Wambura, P., & Yang, W. W. (2009). Ultrasonication and Edible Coating Effects on Lipid Oxidation of Roasted Peanuts. Food and Bioprocess Technology, 3(4), 620-628. doi:10.1007/s11947-009-0282-z es_ES
dc.description.references Williams, J. E., Duncan, S. E., Williams, R. C., Mallikarjunan, K., Eigel, W. N., & O’Keefe, S. F. (2006). Flavor Fade in Peanuts During Short-term Storage. Journal of Food Science, 71(3), S265-S269. doi:10.1111/j.1365-2621.2006.tb15652.x es_ES
dc.description.references Huang, S.-W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of .alpha.- and .gamma.-tocopherols in bulk oils and in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 42(10), 2108-2114. doi:10.1021/jf00046a007 es_ES
dc.description.references JUNG, M. Y., & MIN, D. B. (1990). Effects of ?-, ?-, and ?-Tocopherols on Oxidative Stability of Soybean Oil. Journal of Food Science, 55(5), 1464-1465. doi:10.1111/j.1365-2621.1990.tb03960.x es_ES
dc.description.references Zuta, P. C., Simpson, B. K., Zhao, X., & Leclerc, L. (2007). The effect of α-tocopherol on the oxidation of mackerel oil. Food Chemistry, 100(2), 800-807. doi:10.1016/j.foodchem.2005.11.003 es_ES
dc.description.references Lopez-de-Dicastillo C Balasubramanian A Yam KL Schaich K Characterization of the antioxidant activity of quercetin against lipid oxidation for controlled release packaging IFT Annual Meeting 2009 es_ES
dc.description.references Abou Samra, M., Chedea, V. S., Economou, A., Calokerinos, A., & Kefalas, P. (2011). Antioxidant/prooxidant properties of model phenolic compounds: Part I. Studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chemistry, 125(2), 622-629. doi:10.1016/j.foodchem.2010.08.076 es_ES
dc.description.references Martín-Polvillo, M., Márquez-Ruiz, G., & Dobarganes, M. C. (2004). Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. Journal of the American Oil Chemists’ Society, 81(6), 577-583. doi:10.1007/s11746-006-0944-1 es_ES
dc.description.references Roedig-Penman, A., & Gordon, M. H. (1998). Antioxidant properties of myricetin and quercetin in oil and emulsions. Journal of the American Oil Chemists’ Society, 75(2), 169-180. doi:10.1007/s11746-998-0029-4 es_ES
dc.description.references Nwuha, V., Nakajima, M., Tong, J., & Ichikawa, S. (1999). Solubility study of green tea extracts in pure solvents and edible oils. Journal of Food Engineering, 40(3), 161-165. doi:10.1016/s0260-8774(99)00050-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem