- -

Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids

Mostrar el registro completo del ítem

López De Dicastillo Bergamo, AC.; Pezo, D.; Nerín, C.; López Carballo, G.; Catalá, R.; Gavara Clemente, R.; Hernandez Muñoz, MP. (2012). Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids. Packaging Technology and Science. 25(8):457-466. https://doi.org/10.1002/pts.992

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79837

Ficheros en el ítem

Metadatos del ítem

Título: Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids
Autor: López de Dicastillo Bergamo, Ana Carolina Pezo, Davinson Nerín, Cristina López Carballo, Gracia Catalá, Ramón GAVARA CLEMENTE, RAFAEL Hernandez Muñoz, Maria Pilar
Entidad UPV: Universitat Politècnica de València. Instituto de Agroquímica y Tecnologia de Alimentos - Institut d'Agroquímica i Tecnologia d'Aliments
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] The development of antioxidant active packaging systems is attracting considerable attention as one of the preferred emerging technologies for reducing the incidence of lipid peroxidation. This work presents the use ...[+]
Palabras clave: Antioxidant; , Active packaging , Quercetin , Catechin , EVOH , Radical species
Derechos de uso: Cerrado
Fuente:
Packaging Technology and Science. (issn: 0894-3214 )
DOI: 10.1002/pts.992
Editorial:
Wiley
Versión del editor: http://doi.org/10.1002/pts.992
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2009-08776/ES/Nuevos Sistemas De Envasado Activo Alimentario Basados En Materiales Polimericos O Hibridos Con Capacidad Para La Liberacion Controlada Y Sostenida De Agentes Activos/
info:eu-repo/grantAgreement/MEC//AGL2006-02176/ES/MATERIALES POLIMERICOS HIDROFILICOS CON CAPACIDAD PARA LA LIBERACION O RETENCION DE COMPUESTOS ACTIVOS. DESARROLLO Y CARACTERIZACION DE SU EFECTIVIDAD COMO MATERIALES PARA EL ENVASADO ACTIVO DE ALIME/
info:eu-repo/grantAgreement/MEC//CSD2007-00063/ES/Nuevos Ingredientes de Alimentos Funcionales para Mejorar la Salud/
Agradecimientos:
The authors acknowledge the financial support of the Spanish Ministry of Science and Innovation, projects AGL2006-02176, AGL2009-08776 and Fun-C-Food CSD2007-00063, and the C. L-d-D fellowship (FPU programme). Mary Georgina ...[+]
Tipo: Artículo

References

Martín-Diana, A. B., Rico, D., & Barry-Ryan, C. (2008). Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce. Innovative Food Science & Emerging Technologies, 9(4), 593-603. doi:10.1016/j.ifset.2008.04.001

Rooney, M. L. (Ed.). (1995). Active Food Packaging. doi:10.1007/978-1-4615-2175-4

López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International, 20(4), 357-387. doi:10.1081/fri-200033462 [+]
Martín-Diana, A. B., Rico, D., & Barry-Ryan, C. (2008). Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce. Innovative Food Science & Emerging Technologies, 9(4), 593-603. doi:10.1016/j.ifset.2008.04.001

Rooney, M. L. (Ed.). (1995). Active Food Packaging. doi:10.1007/978-1-4615-2175-4

López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2004). Overview of Active Polymer-Based Packaging Technologies for Food Applications. Food Reviews International, 20(4), 357-387. doi:10.1081/fri-200033462

Moore, M. E., Han, I. Y., Acton, J. C., Ogale, A. A., Barmore, C. R., & Dawson, P. L. (2003). Effects of Antioxidants in Polyethylene Film on Fresh Beef Color. Journal of Food Science, 68(1), 99-104. doi:10.1111/j.1365-2621.2003.tb14122.x

Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10(2), 222-227. doi:10.1016/j.ifset.2008.11.010

Nerín, C., Tovar, L., Djenane, D., Camo, J., Salafranca, J., Beltrán, J. A., & Roncalés, P. (2006). Stabilization of Beef Meat by a New Active Packaging Containing Natural Antioxidants. Journal of Agricultural and Food Chemistry, 54(20), 7840-7846. doi:10.1021/jf060775c

Nerín, C., Tovar, L., & Salafranca, J. (2008). Behaviour of a new antioxidant active film versus oxidizable model compounds. Journal of Food Engineering, 84(2), 313-320. doi:10.1016/j.jfoodeng.2007.05.027

Wessling, C., Nielsen, T., Leufvén, A., & Jägerstad, M. (1998). Mobility of α‐tocopherol and BHT in LDPE in contact with fatty food simulants. Food Additives and Contaminants, 15(6), 709-715. doi:10.1080/02652039809374701

LaCoste, A., Schaich, K. M., Zumbrunnen, D., & Yam, K. L. (2005). Advancing controlled release packaging through smart blending. Packaging Technology and Science, 18(2), 77-87. doi:10.1002/pts.675

Pereira de Abreu, D. A., Paseiro Losada, P., Maroto, J., & Cruz, J. M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Science & Emerging Technologies, 12(1), 50-55. doi:10.1016/j.ifset.2010.12.006

Peltzer, M., Wagner, J., & Jiménez, A. (2009). Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Additives & Contaminants: Part A, 26(6), 938-946. doi:10.1080/02652030802712681

Granda-Restrepo, D. M., Soto-Valdez, H., Peralta, E., Troncoso-Rojas, R., Vallejo-Córdoba, B., Gámez-Meza, N., & Graciano-Verdugo, A. Z. (2009). Migration of α-tocopherol from an active multilayer film into whole milk powder. Food Research International, 42(10), 1396-1402. doi:10.1016/j.foodres.2009.07.007

Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. A. (2009). Effect of adding citrus waste water, thyme and oregano essential oil on the chemical, physical and sensory characteristics of a bologna sausage. Innovative Food Science & Emerging Technologies, 10(4), 655-660. doi:10.1016/j.ifset.2009.06.001

Konsoula, Z., & Liakopoulou-Kyriakides, M. (2010). Effect of endogenous antioxidants of sesame seeds and sesame oil to the thermal stability of edible vegetable oils. LWT - Food Science and Technology, 43(9), 1379-1386. doi:10.1016/j.lwt.2010.04.016

Yanishlieva, N. V., Marinova, E. M., Gordon, M. H., & Raneva, V. G. (1999). Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 64(1), 59-66. doi:10.1016/s0308-8146(98)00086-7

Pedrielli, P., Pedulli, G. F., & Skibsted, L. H. (2001). Antioxidant Mechanism of Flavonoids. Solvent Effect on Rate Constant for Chain-Breaking Reaction of Quercetin and Epicatechin in Autoxidation of Methyl Linoleate. Journal of Agricultural and Food Chemistry, 49(6), 3034-3040. doi:10.1021/jf010017g

Boots, A. W., Haenen, G. R. M. M., & Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. European Journal of Pharmacology, 585(2-3), 325-337. doi:10.1016/j.ejphar.2008.03.008

Garces O Nerin C Beltran JA Roncales P Antioxidant active varnish Patent EP1477519 2004

Pekkarinen, S. S., Heinonen, I. M., & Hopia, A. I. (1999). Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. Journal of the Science of Food and Agriculture, 79(4), 499-506. doi:10.1002/(sici)1097-0010(19990315)79:4<499::aid-jsfa204>3.0.co;2-u

López-de-Dicastillo, C., Alonso, J. M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Improving the Antioxidant Protection of Packaged Food by Incorporating Natural Flavonoids into Ethylene−Vinyl Alcohol Copolymer (EVOH) Films. Journal of Agricultural and Food Chemistry, 58(20), 10958-10964. doi:10.1021/jf1022324

López-Rubio, A., Lagaron, J. M., Giménez, E., Cava, D., Hernandez-Muñoz, P., Yamamoto, T., & Gavara, R. (2003). Morphological Alterations Induced by Temperature and Humidity in Ethylene−Vinyl Alcohol Copolymers. Macromolecules, 36(25), 9467-9476. doi:10.1021/ma035346j

Aucejo, S., Catalá, R., & Gavara, R. (2000). Interactions between water and EVOH food packaging films / Interacciones entre el agua y películas de EVOH para el envasado de alimentos. Food Science and Technology International, 6(2), 159-164. doi:10.1177/108201320000600211

Aucejo, S., Marco, C., & Gavara, R. (1999). Water effect on the morphology of EVOH copolymers. Journal of Applied Polymer Science, 74(5), 1201-1206. doi:10.1002/(sici)1097-4628(19991031)74:5<1201::aid-app17>3.0.co;2-8

Pezo, D., Salafranca, J., & Nerín, C. (2008). Determination of the antioxidant capacity of active food packagings by in situ gas-phase hydroxyl radical generation and high-performance liquid chromatography–fluorescence detection. Journal of Chromatography A, 1178(1-2), 126-133. doi:10.1016/j.chroma.2007.11.062

Pezo, D., Salafranca, J., & Nerín, C. (2006). Design of a method for generation of gas-phase hydroxyl radicals, and use of HPLC with fluorescence detection to assess the antioxidant capacity of natural essential oils. Analytical and Bioanalytical Chemistry, 385(7), 1241-1246. doi:10.1007/s00216-006-0395-4

Saran, M., & Summer, K. H. (1999). Assaying for hydroxyl radicals: Hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radical Research, 31(5), 429-436. doi:10.1080/10715769900300991

Pastorelli, S., Valzacchi, S., Rodriguez, A., & Simoneau, C. (2006). Solid-phase microextraction method for the determination of hexanal in hazelnuts as an indicator of the interaction of active packaging materials with food aroma compounds. Food Additives and Contaminants, 23(11), 1236-1241. doi:10.1080/02652030600778744

Han, J. H., Hwang, H.-M., Min, S., & Krochta, J. M. (2008). Coating of Peanuts with Edible Whey Protein Film Containing α-Tocopherol and Ascorbyl Palmitate. Journal of Food Science, 73(8), E349-E355. doi:10.1111/j.1750-3841.2008.00910.x

Librando, V., & Tringali, G. (2005). Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of α-pinene degradation and secondary organic aerosol formation. Journal of Environmental Management, 75(3), 275-282. doi:10.1016/j.jenvman.2005.01.001

Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82(2), 291-295. doi:10.1113/expphysiol.1997.sp004024

Salmon, R. A., Schiller, C. L., & Harris, G. W. (2004). Evaluation of the Salicylic Acid–Liquid Phase Scrubbing Technique to Monitor Atmospheric Hydroxyl Radicals. Journal of Atmospheric Chemistry, 48(1), 81-104. doi:10.1023/b:joch.0000034516.95400.c3

Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. Journal of Physical and Chemical Reference Data, 24(2), 663-677. doi:10.1063/1.555965

Higdon, J. V., & Frei, B. (2003). Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1), 89-143. doi:10.1080/10408690390826464

Burroni, L. V., Grosso, N. R., & Guzmán, C. A. (1997). Principal Volatile Components of Raw, Roasted, and Fried Argentinean Peanut Flavors. Journal of Agricultural and Food Chemistry, 45(8), 3190-3192. doi:10.1021/jf9700034

Wambura, P., & Yang, W. W. (2009). Ultrasonication and Edible Coating Effects on Lipid Oxidation of Roasted Peanuts. Food and Bioprocess Technology, 3(4), 620-628. doi:10.1007/s11947-009-0282-z

Williams, J. E., Duncan, S. E., Williams, R. C., Mallikarjunan, K., Eigel, W. N., & O’Keefe, S. F. (2006). Flavor Fade in Peanuts During Short-term Storage. Journal of Food Science, 71(3), S265-S269. doi:10.1111/j.1365-2621.2006.tb15652.x

Huang, S.-W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of .alpha.- and .gamma.-tocopherols in bulk oils and in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 42(10), 2108-2114. doi:10.1021/jf00046a007

JUNG, M. Y., & MIN, D. B. (1990). Effects of ?-, ?-, and ?-Tocopherols on Oxidative Stability of Soybean Oil. Journal of Food Science, 55(5), 1464-1465. doi:10.1111/j.1365-2621.1990.tb03960.x

Zuta, P. C., Simpson, B. K., Zhao, X., & Leclerc, L. (2007). The effect of α-tocopherol on the oxidation of mackerel oil. Food Chemistry, 100(2), 800-807. doi:10.1016/j.foodchem.2005.11.003

Lopez-de-Dicastillo C Balasubramanian A Yam KL Schaich K Characterization of the antioxidant activity of quercetin against lipid oxidation for controlled release packaging IFT Annual Meeting 2009

Abou Samra, M., Chedea, V. S., Economou, A., Calokerinos, A., & Kefalas, P. (2011). Antioxidant/prooxidant properties of model phenolic compounds: Part I. Studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chemistry, 125(2), 622-629. doi:10.1016/j.foodchem.2010.08.076

Martín-Polvillo, M., Márquez-Ruiz, G., & Dobarganes, M. C. (2004). Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. Journal of the American Oil Chemists’ Society, 81(6), 577-583. doi:10.1007/s11746-006-0944-1

Roedig-Penman, A., & Gordon, M. H. (1998). Antioxidant properties of myricetin and quercetin in oil and emulsions. Journal of the American Oil Chemists’ Society, 75(2), 169-180. doi:10.1007/s11746-998-0029-4

Nwuha, V., Nakajima, M., Tong, J., & Ichikawa, S. (1999). Solubility study of green tea extracts in pure solvents and edible oils. Journal of Food Engineering, 40(3), 161-165. doi:10.1016/s0260-8774(99)00050-3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem