Mostrar el registro sencillo del ítem
dc.contributor.author | Salcedo, Ramón | es_ES |
dc.contributor.author | Bayón Barrachina, Arnau | es_ES |
dc.contributor.author | Chueca, Patricia | es_ES |
dc.date.accessioned | 2017-04-20T10:40:01Z | |
dc.date.available | 2017-04-20T10:40:01Z | |
dc.date.issued | 2017-01-31 | |
dc.identifier.uri | http://hdl.handle.net/10251/79859 | |
dc.description.abstract | [EN] This paper presents an introduction about how to model a ow through a porous medium with Computatio-nal Fluid Dynamics (CFD). To this end, a case study is proposed by simulating an air current produced bythe fan of an air assisted sprayer through a porous medium (vegetation). The work is aimed at adjustingthe porosity resistance to the air ow using experimental data. The adjustment assesses three scenarios:one, considering only equal inertial losses between di erent porous bodies, two, considering both inertiallosses and viscous losses and, three, considering only di erent inertial losses between di erent porousbodies. Finally, velocities obtained in each simulation are compared with experimental data. The proposedmethodology highlights the importance of employing suitable parameters when con guring CFD models. | es_ES |
dc.description.abstract | [ES] Este trabajo presenta una introducción a la modelización con Dinámica de Fluidos Computacional (CFD) de un fluido atravesando un medio poroso. Para ello, se propone un caso práctico mediante la simulación de un flujo de aire producido por el ventilador de un pulverizador hidráulico asistido por aire que atraviesa un medio poroso (la vegetación). El trabajo consiste en dotar de las herramientas necesarias para configurar un modelo CFD para, posteriormente, ajustar la resistencia de la porosidad al paso de la corriente usando datos experimentales. El ajuste contempla tres escenarios: uno, considerando sólo pérdidas inerciales iguales entre los diferentes cuerpos porosos, dos, considerando dichas pérdidas inerciales más las pérdidas viscosas y, tres, considerando sólo pérdidas inerciales diferentes entre los diferentes cuerpos porosos. Finalmente, se comparan las velocidades obtenidas en cada simulación con datos reales, eligiéndose aquella configuración que arroja mayores ajustes. La metodología planteada pretende poner de manifiesto la importancia de usar con criterio los distintos parámetros propios de la configuración de modelos CFD. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Modelling in Science Education and Learning | |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Corriente de aire | es_ES |
dc.subject | Vegetación | es_ES |
dc.subject | CFD | es_ES |
dc.subject | RANS | es_ES |
dc.subject | k-epsilon | |
dc.subject | Air current | |
dc.subject | Vegetation | |
dc.title | Introduciendo la dinámica de fluidos computacional en el análisis de flujos en medio poroso | es_ES |
dc.title.alternative | Introducing computational fluid dynamics in the analysis of porous medium flows | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-20T09:07:23Z | |
dc.identifier.doi | 10.4995/msel.2017.6700 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Salcedo, R.; Bayón Barrachina, A.; Chueca, P. (2017). Introduciendo la dinámica de fluidos computacional en el análisis de flujos en medio poroso. Modelling in Science Education and Learning. 10(1):261-276. https://doi.org/10.4995/msel.2017.6700 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/msel.2017.6700 | es_ES |
dc.description.upvformatpinicio | 261 | es_ES |
dc.description.upvformatpfin | 276 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1988-3145 | |
dc.description.references | Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5 | es_ES |
dc.description.references | Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H. & Raad, P. E. (2008), Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, 130 (7), 1-4. | es_ES |
dc.description.references | Davidson, P. (2015). Turbulence. doi:10.1093/acprof:oso/9780198722588.001.0001 | es_ES |
dc.description.references | Da Silva, A., Sinfort, C., Tinet, C., Pierrat, D., & Huberson, S. (2006). A Lagrangian model for spray behaviour within vine canopies. Journal of Aerosol Science, 37(5), 658-674. doi:10.1016/j.jaerosci.2005.05.016 | es_ES |
dc.description.references | Endalew, A. M., Debaer, C., Rutten, N., Vercammen, J., Delele, M. A., Ramon, H., … Verboven, P. (2010). A new integrated CFD modelling approach towards air-assisted orchard spraying. Part I. Model development and effect of wind speed and direction on sprayer airflow. Computers and Electronics in Agriculture, 71(2), 128-136. doi:10.1016/j.compag.2009.11.005 | es_ES |
dc.description.references | Li, C., Huang, Q., Yan, S., & Huang, T. (2016). Parametric CFD studies on erosion in 3D double elbow. International Journal of Engineering Systems Modelling and Simulation, 8(4), 264. doi:10.1504/ijesms.2016.079412 | es_ES |
dc.description.references | Granell, R. (2014). Análisis del flujo ambiental y propuesta metodológica para simulaciones CFD aplicadas a la ventilación natural de invernaderos. Tesis Doctoral. Universidad Politécnica de Valencia (Espa-a). | es_ES |
dc.description.references | Hirsch, C. (2007), Numerical computation of internal and external flows: the fundamentals of computational fluid dynamics. Butterworth-Heinemann, 1. | es_ES |
dc.description.references | Jarman, D. S., Faram, M. G., Butler, D., Tabor, G., Stovin, V. R., Burt, D., Throp, E. (2008). Computational fluid dynamics as a tool for urban drainage system analysis: A review of applications and best practice. 11th International Conference on Urban Drainage, 31 August - 5 September 2008, Edinburgh, Scotland. | es_ES |
dc.description.references | Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6 | es_ES |
dc.description.references | Launder, B.E., Spalding, D.B. (1972). Lectures in Mathematical Models of Turbulence. London, United Kingdom: Academic Press. | es_ES |
dc.description.references | Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2 | es_ES |
dc.description.references | Lee, I.-B., Bitog, J. P. P., Hong, S.-W., Seo, I.-H., Kwon, K.-S., Bartzanas, T., & Kacira, M. (2013). The past, present and future of CFD for agro-environmental applications. Computers and Electronics in Agriculture, 93, 168-183. doi:10.1016/j.compag.2012.09.006 | es_ES |
dc.description.references | Igboekwe, M. U., & Achi, N. J. (2011). Finite Difference Method of Modelling Groundwater Flow. Journal of Water Resource and Protection, 03(03), 192-198. doi:10.4236/jwarp.2011.33025 | es_ES |
dc.description.references | Pope, S. B. (2001). Turbulent flows. (11th edition). Cambridge, United Kingdom: Cambridge University Press. | es_ES |
dc.description.references | Salcedo, R., Granell, R., Palau, G., Vallet, A., Garcerá, C., Chueca, P., & Moltó, E. (2015). Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of citrus. Computers and Electronics in Agriculture, 116, 150-161. doi:10.1016/j.compag.2015.06.005 | es_ES |
dc.description.references | SPALART, P., & ALLMARAS, S. (1992). A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.1992-439 | es_ES |
dc.description.references | Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Upper Saddle River, United States: Pearson Education. | es_ES |
dc.description.references | Yamaguchi, H. (2008). Engineering fluid mechanics (Vol. 85). Springer Science & Business Media. | es_ES |