- -

The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway

Mostrar el registro completo del ítem

García Hurtado, N.; Carrera Bergua, E.; Ruiz Rivero, OJ.; López Gresa, MP.; Hedden, P.; Gong, F.; Garcia Martinez, JL. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany. 63(16):5803-5813. doi:10.1093/jxb/ers229

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80000

Ficheros en el ítem

Metadatos del ítem

Título: The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway
Autor: García Hurtado, Noemi Carrera Bergua, Esther Ruiz Rivero, Omar José López Gresa, Mª Pilar Hedden, Peter Gong, Fan Garcia Martinez, Jose L
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Fruit-set and growth in tomato depend on the action of gibberellins (GAs). To evaluate the role of the GA biosynthetic enzyme GA 20-oxidase (GA20ox) in that process, the citrus gene CcGA20ox1 was overexpressed in ...[+]
Palabras clave: Fruit set , Gibberellin (GA) , Gibberellin 20-oxidase , Micro-Tom , Parthenocarpy , Tomato
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/ers229
Editorial:
Oxford University Press (OUP)
Versión del editor: http://doi.org/10.1093/jxb/ers229
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//BIO2006-13437/ES/REGULACION HORMONAL DEL DESARROLLO REPRODUCTIVO: PAPEL DE LAS GIBERELINAS Y SU INTERACCION CON AUXINAS/ /
info:eu-repo/grantAgreement/MICINN//BIO2009-07968/ES/Control Hormonal De La Fructificacion En Tomate/
Agradecimientos:
We thank Dr L. E. P. Peres for providing MT-D seeds, and Mrs T. Sabater for help with GA analysis. This work was supported by grants from the Ministerio de Ciencia y Tecnologia of Spain (BIO2006-13437 and BIO2009-07968). ...[+]
Tipo: Artículo

References

Bangerth, F. (1989). Dominance among fruits/sinks and the search for a correlative signal. Physiologia Plantarum, 76(4), 608-614. doi:10.1111/j.1399-3054.1989.tb05487.x

Bassel, G. W., Mullen, R. T., & Bewley, J. D. (2008). procerais a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. Journal of Experimental Botany, 59(3), 585-593. doi:10.1093/jxb/erm354

Blázquez, M. A., & Weigel, D. (2000). Integration of floral inductive signals in Arabidopsis. Nature, 404(6780), 889-892. doi:10.1038/35009125 [+]
Bangerth, F. (1989). Dominance among fruits/sinks and the search for a correlative signal. Physiologia Plantarum, 76(4), 608-614. doi:10.1111/j.1399-3054.1989.tb05487.x

Bassel, G. W., Mullen, R. T., & Bewley, J. D. (2008). procerais a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. Journal of Experimental Botany, 59(3), 585-593. doi:10.1093/jxb/erm354

Blázquez, M. A., & Weigel, D. (2000). Integration of floral inductive signals in Arabidopsis. Nature, 404(6780), 889-892. doi:10.1038/35009125

Bohner, J., Hedden, P., Bora-Haber, E., & Bangerth, F. (1988). Identification and quantitation of gibberellins in fruits of Lycopersicon esculentum, and their relationship to fruit size in L. esculentum and L. pimpinellfolium. Physiologia Plantarum, 73(3), 348-353. doi:10.1111/j.1399-3054.1988.tb00609.x

Boss, P. K., & Thomas, M. R. (2002). Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature, 416(6883), 847-850. doi:10.1038/416847a

Carvalho, R. F., Campos, M. L., Pino, L. E., Crestana, S. L., Zsögön, A., Lima, J. E., … Peres, L. E. (2011). Convergence of developmental mutants into a single tomato model system: «Micro-Tom» as an effective toolkit for plant development research. Plant Methods, 7(1), 18. doi:10.1186/1746-4811-7-18

De Jong, M., Mariani, C., & Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60(5), 1523-1532. doi:10.1093/jxb/erp094

Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670

Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y

Eriksson, M. E., Israelsson, M., Olsson, O., & Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18(7), 784-788. doi:10.1038/77355

Estruch, J. J., & Beltran, J. P. (1991). Changes in invertase activities precede ovary growth induced by gibberellic acid in. Physiologia Plantarum, 81(3), 319-326. doi:10.1111/j.1399-3054.1991.tb08739.x

Fos, M., Nuez, F., & Garcı́a-Martı́nez, J. L. (2000). The Gene pat-2, Which Induces Natural Parthenocarpy, Alters the Gibberellin Content in Unpollinated Tomato Ovaries. Plant Physiology, 122(2), 471-480. doi:10.1104/pp.122.2.471

Gallego-Giraldo, L., García-Martínez, J. L., Moritz, T., & López-Díaz, I. (2007). Flowering in Tobacco Needs Gibberellins but is not Promoted by the Levels of Active GA1 and GA4 in the Apical Shoot. Plant and Cell Physiology, 48(4), 615-625. doi:10.1093/pcp/pcm034

Grünzweig, J., Rabinowitch, H. D., Katan, J., Wodner, M., & Ben-Tal, Y. (1997). Endogenous gibberellins in foliage of tomato (Lycopersicon esculentum). Phytochemistry, 46(5), 811-815. doi:10.1016/s0031-9422(97)00383-x

Hedden, P., & Kamiya, Y. (1997). GIBBERELLIN BIOSYNTHESIS: Enzymes, Genes and Their Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), 431-460. doi:10.1146/annurev.arplant.48.1.431

Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8

HUERTA, L., FORMENT, J., GADEA, J., FAGOAGA, C., PEÑA, L., PÉREZ-AMADOR, M. A., & GARCÍA-MARTÍNEZ, J. L. (2008). Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant, Cell & Environment, 31(11), 1620-1633. doi:10.1111/j.1365-3040.2008.01870.x

Jasinski, S., Tattersall, A., Piazza, P., Hay, A., Martinez-Garcia, J. F., Schmitz, G., … Tsiantis, M. (2008). PROCERAencodes a DELLA protein that mediates control of dissected leaf form in tomato. The Plant Journal, 56(4), 603-612. doi:10.1111/j.1365-313x.2008.03628.x

Koshioka, M., Nishijima, T., Yamazaki, H., Liu, Y., Nonaka, M., & Mander, L. N. (1994). Analysis of gibberellins in growing fruits ofLycopersicon esculentumafter pollination or treatment with 4-chlorophenoxyacetic acid. Journal of Horticultural Science, 69(1), 171-179. doi:10.1080/14620316.1994.11515263

Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154

Martí, C., Orzáez, D., Ellul, P., Moreno, V., Carbonell, J., & Granell, A. (2007). Silencing ofDELLAinduces facultative parthenocarpy in tomato fruits. The Plant Journal, 52(5), 865-876. doi:10.1111/j.1365-313x.2007.03282.x

Olimpieri, I., Caccia, R., Picarella, M. E., Pucci, A., Santangelo, E., Soressi, G. P., & Mazzucato, A. (2011). Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in vegetative and reproductive development. Plant Science, 180(3), 496-503. doi:10.1016/j.plantsci.2010.11.004

Olimpieri, I., Siligato, F., Caccia, R., Soressi, G. P., Mazzucato, A., Mariotti, L., & Ceccarelli, N. (2007). Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226(4), 877-888. doi:10.1007/s00425-007-0533-z

Olszewski, N., Sun, T., & Gubler, F. (2002). Gibberellin Signaling. The Plant Cell, 14(suppl 1), S61-S80. doi:10.1105/tpc.010476

Pandolfini, T., Molesini, B., & Spena, A. (2007). Molecular dissection of the role of auxin in fruit initiation. Trends in Plant Science, 12(8), 327-329. doi:10.1016/j.tplants.2007.06.011

Pérez, F. J., & Gómez, M. (2000). Plant Growth Regulation, 30(2), 111-116. doi:10.1023/a:1006318306115

Rieu, I., Eriksson, S., Powers, S. J., Gong, F., Griffiths, J., Woolley, L., … Phillips, A. L. (2008). Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis. The Plant Cell, 20(9), 2420-2436. doi:10.1105/tpc.108.058818

Schwechheimer, C. (2008). Understanding gibberellic acid signaling—are we there yet? Current Opinion in Plant Biology, 11(1), 9-15. doi:10.1016/j.pbi.2007.10.011

Serrani, J. C., Carrera, E., Ruiz-Rivero, O., Gallego-Giraldo, L., Peres, L. E. P., & García-Martínez, J. L. (2010). Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins. Plant Physiology, 153(2), 851-862. doi:10.1104/pp.110.155424

Serrani, J. C., Fos, M., Atarés, A., & García-Martínez, J. L. (2007). Effect of Gibberellin and Auxin on Parthenocarpic Fruit Growth Induction in the cv Micro-Tom of Tomato. Journal of Plant Growth Regulation, 26(3), 211-221. doi:10.1007/s00344-007-9014-7

Serrani, J. C., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2008). Auxin-induced fruit-set in tomato is mediated in part by gibberellins. The Plant Journal, 56(6), 922-934. doi:10.1111/j.1365-313x.2008.03654.x

Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiology, 145(1), 246-257. doi:10.1104/pp.107.098335

Singh, D. P., Filardo, F. F., Storey, R., Jermakow, A. M., Yamaguchi, S., & Swain, S. M. (2010). Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis. Physiologia Plantarum, 138(1), 74-90. doi:10.1111/j.1399-3054.2009.01289.x

Tanksley, S. D., & Hewitt, J. (1988). Use of molecular markers in breeding for soluble solids content in tomato — a re-examination. Theoretical and Applied Genetics, 75(5), 811-823. doi:10.1007/bf00265610

Vidal, A. M., Ben-Cheikh, W., Tal�n, M., & Garc�a-Mart�nez, J. L. (2003). Regulation of gibberellin�20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta, 217(3), 442-448. doi:10.1007/s00425-003-0999-2

Vidal, A. M., Gisbert, C., Talon, M., Primo-Millo, E., Lopez-Diaz, I., & Garcia-Martinez, J. L. (2001). The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco. Physiologia Plantarum, 112(2), 251-260. doi:10.1034/j.1399-3054.2001.1120214.x

Xiao, J., Li, H., Zhang, J., Chen, R., Zhang, Y., Ouyang, B., … Ye, Z. (2006). Dissection of GA 20-oxidase members affecting tomato morphology by RNAi-mediated silencing. Plant Growth Regulation, 50(2-3), 179-189. doi:10.1007/s10725-006-9117-3

Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.092804

Yamaguchi, S., & Kamiya, Y. (2000). Gibberellin Biosynthesis: Its Regulation by Endogenous and Environmental Signals. Plant and Cell Physiology, 41(3), 251-257. doi:10.1093/pcp/41.3.251

Yanai, O., Shani, E., Russ, D., & Ori, N. (2011). Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal, 68(4), 571-582. doi:10.1111/j.1365-313x.2011.04716.x

Zhang, C., Tanabe, K., Tamura, F., Itai, A., & Yoshida, M. (2007). Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regulation, 52(2), 161-172. doi:10.1007/s10725-007-9187-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem