- -

The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Hurtado, Noemi es_ES
dc.contributor.author Carrera Bergua, Esther es_ES
dc.contributor.author Ruiz Rivero, Omar José es_ES
dc.contributor.author López Gresa, Mª Pilar es_ES
dc.contributor.author Hedden, Peter es_ES
dc.contributor.author Gong, Fan es_ES
dc.contributor.author Garcia Martinez, Jose L es_ES
dc.date.accessioned 2017-04-26T07:33:31Z
dc.date.available 2017-04-26T07:33:31Z
dc.date.issued 2012-10
dc.identifier.issn 0022-0957
dc.identifier.uri http://hdl.handle.net/10251/80000
dc.description.abstract [EN] Fruit-set and growth in tomato depend on the action of gibberellins (GAs). To evaluate the role of the GA biosynthetic enzyme GA 20-oxidase (GA20ox) in that process, the citrus gene CcGA20ox1 was overexpressed in tomato (Solanum lycopersicum L.) cv Micro-Tom. The transformed plants were taller, had non-serrated leaves, and some flowers displayed a protruding stigma due to a longer style, thus preventing self-pollination, similar to GA(3)-treated plants. Flowering was delayed compared with wild-type (WT) plants. Both yield and number of fruits per plant, some of them seedless, were higher in the transgenic plants. The Brix index value of fruit juice was also higher due to elevated citric acid content, but not glucose or fructose content. When emasculated, 1430% of ovaries from transgenic flowers developed parthenocarpically, whereas no parthenocarpy was found in emasculated WT flowers. The presence of early-13-hydroxylation and non-13-hydroxylation GA pathways was demonstrated in the shoot and fruit of Micro-Tom, as well as in two tall tomato cultivars (Ailsa Craig and UC-82). The transgenic plants had altered GA profiles containing higher concentrations of GA(4), from the non-13-hydroxylation pathway, which is generally a minor active GA in tomato. The effect of GA(4) application in enhancing stem growth and parthenocarpic fruit development was proportional to dose, with the same activity as GA(1). The results support the contention that GA20ox overexpression diverts GA metabolism from the early-13-hydroxylation pathway to the non-13-hydroxylation pathway. This led to enhanced GA(4) synthesis and higher yield, although the increase in GA(4) content in the ovary was not sufficient to induce full parthenocarpy. es_ES
dc.description.sponsorship We thank Dr L. E. P. Peres for providing MT-D seeds, and Mrs T. Sabater for help with GA analysis. This work was supported by grants from the Ministerio de Ciencia y Tecnologia of Spain (BIO2006-13437 and BIO2009-07968). EC was the recipient of a Ramon y Cajal grant. Rothamsted Research is sponsored by the Biotechnology and Biological Sciences Research Council of the UK. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fruit set es_ES
dc.subject Gibberellin (GA) es_ES
dc.subject Gibberellin 20-oxidase es_ES
dc.subject Micro-Tom es_ES
dc.subject Parthenocarpy es_ES
dc.subject Tomato es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/ers229
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BIO2006-13437/ES/REGULACION HORMONAL DEL DESARROLLO REPRODUCTIVO: PAPEL DE LAS GIBERELINAS Y SU INTERACCION CON AUXINAS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2009-07968/ES/Control Hormonal De La Fructificacion En Tomate/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation García Hurtado, N.; Carrera Bergua, E.; Ruiz Rivero, OJ.; López Gresa, MP.; Hedden, P.; Gong, F.; Garcia Martinez, JL. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany. 63(16):5803-5813. doi:10.1093/jxb/ers229 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1093/jxb/ers229 es_ES
dc.description.upvformatpinicio 5803 es_ES
dc.description.upvformatpfin 5813 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 63 es_ES
dc.description.issue 16 es_ES
dc.relation.senia 231124 es_ES
dc.identifier.pmid 22945942
dc.description.references Bangerth, F. (1989). Dominance among fruits/sinks and the search for a correlative signal. Physiologia Plantarum, 76(4), 608-614. doi:10.1111/j.1399-3054.1989.tb05487.x es_ES
dc.description.references Bassel, G. W., Mullen, R. T., & Bewley, J. D. (2008). procerais a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. Journal of Experimental Botany, 59(3), 585-593. doi:10.1093/jxb/erm354 es_ES
dc.description.references Blázquez, M. A., & Weigel, D. (2000). Integration of floral inductive signals in Arabidopsis. Nature, 404(6780), 889-892. doi:10.1038/35009125 es_ES
dc.description.references Bohner, J., Hedden, P., Bora-Haber, E., & Bangerth, F. (1988). Identification and quantitation of gibberellins in fruits of Lycopersicon esculentum, and their relationship to fruit size in L. esculentum and L. pimpinellfolium. Physiologia Plantarum, 73(3), 348-353. doi:10.1111/j.1399-3054.1988.tb00609.x es_ES
dc.description.references Boss, P. K., & Thomas, M. R. (2002). Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature, 416(6883), 847-850. doi:10.1038/416847a es_ES
dc.description.references Carvalho, R. F., Campos, M. L., Pino, L. E., Crestana, S. L., Zsögön, A., Lima, J. E., … Peres, L. E. (2011). Convergence of developmental mutants into a single tomato model system: «Micro-Tom» as an effective toolkit for plant development research. Plant Methods, 7(1), 18. doi:10.1186/1746-4811-7-18 es_ES
dc.description.references De Jong, M., Mariani, C., & Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60(5), 1523-1532. doi:10.1093/jxb/erp094 es_ES
dc.description.references Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 es_ES
dc.description.references Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y es_ES
dc.description.references Eriksson, M. E., Israelsson, M., Olsson, O., & Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18(7), 784-788. doi:10.1038/77355 es_ES
dc.description.references Estruch, J. J., & Beltran, J. P. (1991). Changes in invertase activities precede ovary growth induced by gibberellic acid in. Physiologia Plantarum, 81(3), 319-326. doi:10.1111/j.1399-3054.1991.tb08739.x es_ES
dc.description.references Fos, M., Nuez, F., & Garcı́a-Martı́nez, J. L. (2000). The Gene pat-2, Which Induces Natural Parthenocarpy, Alters the Gibberellin Content in Unpollinated Tomato Ovaries. Plant Physiology, 122(2), 471-480. doi:10.1104/pp.122.2.471 es_ES
dc.description.references Gallego-Giraldo, L., García-Martínez, J. L., Moritz, T., & López-Díaz, I. (2007). Flowering in Tobacco Needs Gibberellins but is not Promoted by the Levels of Active GA1 and GA4 in the Apical Shoot. Plant and Cell Physiology, 48(4), 615-625. doi:10.1093/pcp/pcm034 es_ES
dc.description.references Grünzweig, J., Rabinowitch, H. D., Katan, J., Wodner, M., & Ben-Tal, Y. (1997). Endogenous gibberellins in foliage of tomato (Lycopersicon esculentum). Phytochemistry, 46(5), 811-815. doi:10.1016/s0031-9422(97)00383-x es_ES
dc.description.references Hedden, P., & Kamiya, Y. (1997). GIBBERELLIN BIOSYNTHESIS: Enzymes, Genes and Their Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), 431-460. doi:10.1146/annurev.arplant.48.1.431 es_ES
dc.description.references Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8 es_ES
dc.description.references HUERTA, L., FORMENT, J., GADEA, J., FAGOAGA, C., PEÑA, L., PÉREZ-AMADOR, M. A., & GARCÍA-MARTÍNEZ, J. L. (2008). Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant, Cell & Environment, 31(11), 1620-1633. doi:10.1111/j.1365-3040.2008.01870.x es_ES
dc.description.references Jasinski, S., Tattersall, A., Piazza, P., Hay, A., Martinez-Garcia, J. F., Schmitz, G., … Tsiantis, M. (2008). PROCERAencodes a DELLA protein that mediates control of dissected leaf form in tomato. The Plant Journal, 56(4), 603-612. doi:10.1111/j.1365-313x.2008.03628.x es_ES
dc.description.references Koshioka, M., Nishijima, T., Yamazaki, H., Liu, Y., Nonaka, M., & Mander, L. N. (1994). Analysis of gibberellins in growing fruits ofLycopersicon esculentumafter pollination or treatment with 4-chlorophenoxyacetic acid. Journal of Horticultural Science, 69(1), 171-179. doi:10.1080/14620316.1994.11515263 es_ES
dc.description.references Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154 es_ES
dc.description.references Martí, C., Orzáez, D., Ellul, P., Moreno, V., Carbonell, J., & Granell, A. (2007). Silencing ofDELLAinduces facultative parthenocarpy in tomato fruits. The Plant Journal, 52(5), 865-876. doi:10.1111/j.1365-313x.2007.03282.x es_ES
dc.description.references Olimpieri, I., Caccia, R., Picarella, M. E., Pucci, A., Santangelo, E., Soressi, G. P., & Mazzucato, A. (2011). Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in vegetative and reproductive development. Plant Science, 180(3), 496-503. doi:10.1016/j.plantsci.2010.11.004 es_ES
dc.description.references Olimpieri, I., Siligato, F., Caccia, R., Soressi, G. P., Mazzucato, A., Mariotti, L., & Ceccarelli, N. (2007). Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226(4), 877-888. doi:10.1007/s00425-007-0533-z es_ES
dc.description.references Olszewski, N., Sun, T., & Gubler, F. (2002). Gibberellin Signaling. The Plant Cell, 14(suppl 1), S61-S80. doi:10.1105/tpc.010476 es_ES
dc.description.references Pandolfini, T., Molesini, B., & Spena, A. (2007). Molecular dissection of the role of auxin in fruit initiation. Trends in Plant Science, 12(8), 327-329. doi:10.1016/j.tplants.2007.06.011 es_ES
dc.description.references Pérez, F. J., & Gómez, M. (2000). Plant Growth Regulation, 30(2), 111-116. doi:10.1023/a:1006318306115 es_ES
dc.description.references Rieu, I., Eriksson, S., Powers, S. J., Gong, F., Griffiths, J., Woolley, L., … Phillips, A. L. (2008). Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis. The Plant Cell, 20(9), 2420-2436. doi:10.1105/tpc.108.058818 es_ES
dc.description.references Schwechheimer, C. (2008). Understanding gibberellic acid signaling—are we there yet? Current Opinion in Plant Biology, 11(1), 9-15. doi:10.1016/j.pbi.2007.10.011 es_ES
dc.description.references Serrani, J. C., Carrera, E., Ruiz-Rivero, O., Gallego-Giraldo, L., Peres, L. E. P., & García-Martínez, J. L. (2010). Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins. Plant Physiology, 153(2), 851-862. doi:10.1104/pp.110.155424 es_ES
dc.description.references Serrani, J. C., Fos, M., Atarés, A., & García-Martínez, J. L. (2007). Effect of Gibberellin and Auxin on Parthenocarpic Fruit Growth Induction in the cv Micro-Tom of Tomato. Journal of Plant Growth Regulation, 26(3), 211-221. doi:10.1007/s00344-007-9014-7 es_ES
dc.description.references Serrani, J. C., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2008). Auxin-induced fruit-set in tomato is mediated in part by gibberellins. The Plant Journal, 56(6), 922-934. doi:10.1111/j.1365-313x.2008.03654.x es_ES
dc.description.references Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiology, 145(1), 246-257. doi:10.1104/pp.107.098335 es_ES
dc.description.references Singh, D. P., Filardo, F. F., Storey, R., Jermakow, A. M., Yamaguchi, S., & Swain, S. M. (2010). Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis. Physiologia Plantarum, 138(1), 74-90. doi:10.1111/j.1399-3054.2009.01289.x es_ES
dc.description.references Tanksley, S. D., & Hewitt, J. (1988). Use of molecular markers in breeding for soluble solids content in tomato — a re-examination. Theoretical and Applied Genetics, 75(5), 811-823. doi:10.1007/bf00265610 es_ES
dc.description.references Vidal, A. M., Ben-Cheikh, W., Tal�n, M., & Garc�a-Mart�nez, J. L. (2003). Regulation of gibberellin�20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta, 217(3), 442-448. doi:10.1007/s00425-003-0999-2 es_ES
dc.description.references Vidal, A. M., Gisbert, C., Talon, M., Primo-Millo, E., Lopez-Diaz, I., & Garcia-Martinez, J. L. (2001). The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco. Physiologia Plantarum, 112(2), 251-260. doi:10.1034/j.1399-3054.2001.1120214.x es_ES
dc.description.references Xiao, J., Li, H., Zhang, J., Chen, R., Zhang, Y., Ouyang, B., … Ye, Z. (2006). Dissection of GA 20-oxidase members affecting tomato morphology by RNAi-mediated silencing. Plant Growth Regulation, 50(2-3), 179-189. doi:10.1007/s10725-006-9117-3 es_ES
dc.description.references Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.092804 es_ES
dc.description.references Yamaguchi, S., & Kamiya, Y. (2000). Gibberellin Biosynthesis: Its Regulation by Endogenous and Environmental Signals. Plant and Cell Physiology, 41(3), 251-257. doi:10.1093/pcp/41.3.251 es_ES
dc.description.references Yanai, O., Shani, E., Russ, D., & Ori, N. (2011). Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal, 68(4), 571-582. doi:10.1111/j.1365-313x.2011.04716.x es_ES
dc.description.references Zhang, C., Tanabe, K., Tamura, F., Itai, A., & Yoshida, M. (2007). Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regulation, 52(2), 161-172. doi:10.1007/s10725-007-9187-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem