- -

Local deformation in a hydrogel induced by an external magnetic field

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Local deformation in a hydrogel induced by an external magnetic field

Show full item record

Vikingsson, L.; Vinals Guitart, Á.; Valera Martínez, A.; Riera Guasp, J.; Vidaurre, A.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2016). Local deformation in a hydrogel induced by an external magnetic field. Journal of Materials Science. 51(22):9979-9990. doi:10.1007/s10853-016-0226-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80319

Files in this item

Item Metadata

Title: Local deformation in a hydrogel induced by an external magnetic field
Author: Vikingsson, Line Vinals Guitart, Álvaro Valera Martínez, Alfonso Riera Guasp, Jaime Vidaurre Garayo, Ana Jesús Gallego Ferrer, Gloria Gómez Ribelles, José Luís
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Issued date:
Abstract:
The aim of this study is to prove the feasibility of a system able to apply local mechanical loading on cells seeded in a hydrogel for tissue engineering applications. This experimental study is based on a previously ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Journal of Materials Science. (issn: 0022-2461 )
DOI: 10.1007/s10853-016-0226-8
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10853-016-0226-8
Thanks:
The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the MAT2013-46467-C4-1-R project, including the Feder funds. CIBER-BBN is an initiative funded by ...[+]
Type: Artículo

References

Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35

Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397

Gillard GC, Reilly HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46 [+]
Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35

Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397

Gillard GC, Reilly HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46

Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111:573–583

Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995) Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73:349–365

Appelman T, Mizrahi J, Elisseeff J, Seliktar D (2011) The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials 32:1508–1516

Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

Mow VC, Huiskes R (2005) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams and Wilkins, Philadelphia

Brady MA, Waldman SD, Ethier CR (2015) The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng Part B Rev 21:1–19

Valhmu WB, Stazzone EJ, Bachrach NM, Saed-Nejad F, Fischer SG, Mow VC, Ratcliffe A (1998) Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch Biochem Biophys 353:29–36

Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Ann Rev Physiol 59:575–599

Khan S, Sheetz MP (1997) Force effects on biochemical kinetics. Ann Rev Biochem 66:785–805

Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method. Exp Cell Res 1:37–80

Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140

Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys J 52:551–561

Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol 73:327–335

Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164

Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study. Biophys J 80:2649–2657

Li L, Yang G, Li J, Ding S, Zhou S (2014) Cell behaviors on magnetic electrospun poly-d, l-lactide nano fibers. Mater Sci Eng, C 34:252–261

Fuhrer R, Hofmann S, Hild N, Vetsch JR, Herrmann IK, Grass RN, Stark WJ (2013) Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 8:e81362

Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ (2016) Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci USA 113:1534–1539

Vikingsson L, Gallego Ferrer G, Gómez-Tejedor JA, Gómez Ribelles JL (2014) An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131

Vikingsson L, Gomez-Tejedor JA, Gallego Ferrer G, Gomez Ribelles JL (2015) An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. J Biomech 48:1310–1317

Vikingsson L, Claessens B, Gómez-Tejedor JA, Gallego Ferrer G, Gómez Ribelles JL (2015) Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. J Mech Behav Biomed Mater 48:60–69

Li F, Su YL, Shi DF, Wang CT (2010) Comparison of human articular cartilage and polyvinyl alcohol hydrogel as artificial cartilage in microstructure analysis and unconfined compression. Adv Mater Res Trans Tech Publ 87:188–193

Grant C, Twigg P, Egan A, Moody A, Eagland D, Crowther N, Britland S (2006) Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage. Biotechnol Prog 22:1400–1406

Weeber R, Kantorovich S, Holm C (2015) Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. J Magn Magn Mater 383:262–266

Lebourg M, Suay Antón J, Gómez Ribelles JL (2008) Porous membranes of PLLA–PCL blend for tissue engineering applications. Eur Polym J 44:2207–2218

Santamaría VA, Deplaine H, Mariggió D, Villanueva-Molines AR, García-Aznar JM, Gómez Ribelles JL, Doblaré M, Gallego Ferrer G, Ochoa I (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly (l-lactic acid) scaffolds. J Non Cryst Solids 358:3141–3149

Panadero JA, Vikingsson L, Gomez Ribelles JL, Lanceros-Mendez S, Sencadas V (2015) In vitro mechanical fatigue behaviour of poly-ε-caprolactone macroporous scaffolds for cartilage tissue engineering. Influence of pore filling by a poly(vinyl alcohol) gel. J Biomed Mater Res Part B Appl Biomater 103:1037–1043

Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

Mano JF, Gómez Ribelles JL, Alves NM, Salmerón Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265

Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295

Garlotta D (2001) A literature review of poly(lactic acid). J Polym Eng 9:63–84

Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys 17:1097–1162

Hernández F, Molina Mateo J, Romero Colomer F, Salmerón Sánchez M, Gómez Ribelles JL, Mano J (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6:3291–3299

Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contribution to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718

Salmerón Sánchez M, Vincent BM, Vanden Poel G, Gómez-Ribelles JL (2007) Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997

Nobuyuki O (1975) A threshold selection method from gray-level histograms. Automatica 11:23–27

[-]

This item appears in the following Collection(s)

Show full item record