- -

Local deformation in a hydrogel induced by an external magnetic field

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Local deformation in a hydrogel induced by an external magnetic field

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vikingsson, Line es_ES
dc.contributor.author Vinals Guitart, Álvaro es_ES
dc.contributor.author Valera Martínez, Alfonso es_ES
dc.contributor.author Riera Guasp, Jaime es_ES
dc.contributor.author Vidaurre Garayo, Ana Jesús es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2017-05-02T11:39:44Z
dc.date.available 2017-05-02T11:39:44Z
dc.date.issued 2016-11
dc.identifier.issn 0022-2461
dc.identifier.uri http://hdl.handle.net/10251/80319
dc.description.abstract The aim of this study is to prove the feasibility of a system able to apply local mechanical loading on cells seeded in a hydrogel for tissue engineering applications. This experimental study is based on a previously developed artificial cartilage model with different concentrations of poly(vinyl alcohol) (PVA) that simulates the cartilage extracellular matrix (ECM). Poly(l-lactic acid) (PLLA) microspheres with dispersed magnetic nanoparticles (MNPs) were produced with an emulsion method. These microspheres were embedded in aqueous PVA solutions with varying concentration to resemble increased viscosity of growing tissue during regeneration. The ability to induce a local deformation in the ECM was assessed by applying a steady or an oscillatory magnetic field gradient to different PVA solutions containing the magnetic microparticles, similarly as in ferrogels. PLLA microparticle motion was recorded, and the images were analyzed. Besides, PVA gels and PLLA microparticles were introduced into the pores of a polycaprolactone scaffold, and the microparticle distribution and the mechanical properties of the construct were evaluated. The results of this experimental model show that the dispersion of PLLA microparticles containing MNPs, together with cells in a supporting gel, will allow applying local mechanical stimuli to cells during tissue regeneration. This local stimulation can have a positive effect on the differentiation of seeded cells and improve tissue regeneration. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the MAT2013-46467-C4-1-R project, including the Feder funds. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank "Servicio de Microscopia Electronica" of Universitat Politecnica de Valencia for their invaluable help. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Materials Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Local deformation in a hydrogel induced by an external magnetic field es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10853-016-0226-8
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Vikingsson, L.; Vinals Guitart, Á.; Valera Martínez, A.; Riera Guasp, J.; Vidaurre Garayo, AJ.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2016). Local deformation in a hydrogel induced by an external magnetic field. Journal of Materials Science. 51(22):9979-9990. https://doi.org/10.1007/s10853-016-0226-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10853-016-0226-8 es_ES
dc.description.upvformatpinicio 9979 es_ES
dc.description.upvformatpfin 9990 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 22 es_ES
dc.relation.senia 325036 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.description.references Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35 es_ES
dc.description.references Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397 es_ES
dc.description.references Gillard GC, Reilly HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46 es_ES
dc.description.references Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111:573–583 es_ES
dc.description.references Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995) Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73:349–365 es_ES
dc.description.references Appelman T, Mizrahi J, Elisseeff J, Seliktar D (2011) The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials 32:1508–1516 es_ES
dc.description.references Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97 es_ES
dc.description.references Mow VC, Huiskes R (2005) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams and Wilkins, Philadelphia es_ES
dc.description.references Brady MA, Waldman SD, Ethier CR (2015) The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng Part B Rev 21:1–19 es_ES
dc.description.references Valhmu WB, Stazzone EJ, Bachrach NM, Saed-Nejad F, Fischer SG, Mow VC, Ratcliffe A (1998) Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch Biochem Biophys 353:29–36 es_ES
dc.description.references Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Ann Rev Physiol 59:575–599 es_ES
dc.description.references Khan S, Sheetz MP (1997) Force effects on biochemical kinetics. Ann Rev Biochem 66:785–805 es_ES
dc.description.references Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543 es_ES
dc.description.references Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method. Exp Cell Res 1:37–80 es_ES
dc.description.references Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140 es_ES
dc.description.references Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys J 52:551–561 es_ES
dc.description.references Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol 73:327–335 es_ES
dc.description.references Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164 es_ES
dc.description.references Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study. Biophys J 80:2649–2657 es_ES
dc.description.references Li L, Yang G, Li J, Ding S, Zhou S (2014) Cell behaviors on magnetic electrospun poly-d, l-lactide nano fibers. Mater Sci Eng, C 34:252–261 es_ES
dc.description.references Fuhrer R, Hofmann S, Hild N, Vetsch JR, Herrmann IK, Grass RN, Stark WJ (2013) Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 8:e81362 es_ES
dc.description.references Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ (2016) Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci USA 113:1534–1539 es_ES
dc.description.references Vikingsson L, Gallego Ferrer G, Gómez-Tejedor JA, Gómez Ribelles JL (2014) An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131 es_ES
dc.description.references Vikingsson L, Gomez-Tejedor JA, Gallego Ferrer G, Gomez Ribelles JL (2015) An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. J Biomech 48:1310–1317 es_ES
dc.description.references Vikingsson L, Claessens B, Gómez-Tejedor JA, Gallego Ferrer G, Gómez Ribelles JL (2015) Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. J Mech Behav Biomed Mater 48:60–69 es_ES
dc.description.references Li F, Su YL, Shi DF, Wang CT (2010) Comparison of human articular cartilage and polyvinyl alcohol hydrogel as artificial cartilage in microstructure analysis and unconfined compression. Adv Mater Res Trans Tech Publ 87:188–193 es_ES
dc.description.references Grant C, Twigg P, Egan A, Moody A, Eagland D, Crowther N, Britland S (2006) Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage. Biotechnol Prog 22:1400–1406 es_ES
dc.description.references Weeber R, Kantorovich S, Holm C (2015) Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. J Magn Magn Mater 383:262–266 es_ES
dc.description.references Lebourg M, Suay Antón J, Gómez Ribelles JL (2008) Porous membranes of PLLA–PCL blend for tissue engineering applications. Eur Polym J 44:2207–2218 es_ES
dc.description.references Santamaría VA, Deplaine H, Mariggió D, Villanueva-Molines AR, García-Aznar JM, Gómez Ribelles JL, Doblaré M, Gallego Ferrer G, Ochoa I (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly (l-lactic acid) scaffolds. J Non Cryst Solids 358:3141–3149 es_ES
dc.description.references Panadero JA, Vikingsson L, Gomez Ribelles JL, Lanceros-Mendez S, Sencadas V (2015) In vitro mechanical fatigue behaviour of poly-ε-caprolactone macroporous scaffolds for cartilage tissue engineering. Influence of pore filling by a poly(vinyl alcohol) gel. J Biomed Mater Res Part B Appl Biomater 103:1037–1043 es_ES
dc.description.references Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65 es_ES
dc.description.references Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504 es_ES
dc.description.references Mano JF, Gómez Ribelles JL, Alves NM, Salmerón Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265 es_ES
dc.description.references Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295 es_ES
dc.description.references Garlotta D (2001) A literature review of poly(lactic acid). J Polym Eng 9:63–84 es_ES
dc.description.references Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys 17:1097–1162 es_ES
dc.description.references Hernández F, Molina Mateo J, Romero Colomer F, Salmerón Sánchez M, Gómez Ribelles JL, Mano J (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6:3291–3299 es_ES
dc.description.references Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contribution to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718 es_ES
dc.description.references Salmerón Sánchez M, Vincent BM, Vanden Poel G, Gómez-Ribelles JL (2007) Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997 es_ES
dc.description.references Nobuyuki O (1975) A threshold selection method from gray-level histograms. Automatica 11:23–27 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem