Casabán Bartual, MC.; Cortés López, JC.; Jódar Sánchez, LA. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling. 40(21-22):9362-9377. https://doi.org/10.1016/j.apm.2016.06.017
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80320
Title: | Solving linear and quadratic random matrix differential equations: A mean square approach | |
Author: | ||
UPV Unit: |
|
|
Issued date: |
|
|
Abstract: |
[EN] In this paper linear and Riccati random matrix differential equations are solved taking advantage of the so called L-p-random calculus. Uncertainty is assumed in coefficients and initial conditions. Existence of the ...[+]
|
|
Subjects: |
|
|
Copyrigths: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Source: |
|
|
DOI: |
|
|
Publisher: |
|
|
Publisher version: | http://doi.org/10.1016/j.apm.2016.06.017 | |
Project ID: |
|
|
Thanks: |
This work has been partially supported by the Spanish Ministerio de Economia y Competitividad grant MTM2013-41765-P and by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie ...[+]
|
|
Type: |
|