- -

Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Bertomeu, Jesús es_ES
dc.contributor.author Cascales Miñana, Borja es_ES
dc.contributor.author Mulet Salort, José Miguel es_ES
dc.contributor.author Baroja-Fernandez, Edurne es_ES
dc.contributor.author Pozueta Romero, Javier es_ES
dc.contributor.author Kuhn, Josef M. es_ES
dc.contributor.author Segura Garcia del Rio, Juan es_ES
dc.contributor.author Ros Palau, Roc es_ES
dc.date.accessioned 2017-05-08T07:06:23Z
dc.date.available 2017-05-08T07:06:23Z
dc.date.issued 2009-10
dc.identifier.issn 0032-0889
dc.identifier.uri http://hdl.handle.net/10251/80703
dc.description.abstract [EN] Glycolysis is a central metabolic pathway that, in plants, occurs in both the cytosol and the plastids. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate with concomitant reduction of NAD(+) to NADH. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described. However, the in vivo functions of the plastidial isoforms remain unresolved. In this work, we have identified two Arabidopsis (Arabidopsis thaliana) chloroplast/plastid-localized GAPDH isoforms (GAPCp1 and GAPCp2). gapcp double mutants display a drastic phenotype of arrested root development, dwarfism, and sterility. In spite of their low gene expression level as compared with other GAPDHs, GAPCp down-regulation leads to altered gene expression and to drastic changes in the sugar and amino acid balance of the plant. We demonstrate that GAPCps are important for the synthesis of serine in roots. Serine supplementation to the growth medium rescues root developmental arrest and restores normal levels of carbohydrates and sugar biosynthetic activities in gapcp double mutants. We provide evidence that the phosphorylated pathway of Ser biosynthesis plays an important role in supplying serine to roots. Overall, these studies provide insights into the in vivo functions of the GAPCps in plants. Our results emphasize the importance of the plastidial glycolytic pathway, and specifically of GAPCps, in plant primary metabolism. es_ES
dc.description.sponsorship This work was supported by the European Union (Sixth Framework programme, grant no. MOIF-CT-2004-50927), by the Spanish Government (grant no. BFU2006-01621/BFI), by the Valencian Government (grant nos. PROMETEO/2009/075 and ACOMP/2009/328), by a Formacion de Profesorado Universitario research fellowship from the Spanish Government to B. C.-M., and by the National Institutes of Health and the National Science Foundation (grant nos. GM060396 and MCB0417118, respectively, to Julian Schroeder at University of California San Diego). en_EN
dc.language Inglés es_ES
dc.publisher American Society of Plant Biologists es_ES
dc.relation.ispartof Plant Physiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject In-source leaves es_ES
dc.subject Serine biosynthesis es_ES
dc.subject Molecular characterization es_ES
dc.subject Escherichia-Coli es_ES
dc.subject Oxidative stress es_ES
dc.subject Gene-expression es_ES
dc.subject Crucial role es_ES
dc.subject Thaliana es_ES
dc.subject Metabolism es_ES
dc.subject Pathway es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1104/pp.109.143701 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF/Directorate for Biological Sciences/0417118/US/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/509278/EU/Involvement of RNA-binding Proteins in the plant responses to drought and salinity/SALT-DROUGHT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BFU2006-01621/ES/CARACTERIZACION FUNCIONAL DE LAS PROTEINAS DE UNION A RNA ABH1 Y SATO1 DE ARABIDOPSIS. RELACION CON LOS ESTRESES HIDRICO Y SALINO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//ACOMP%2F2009%2F328/ES/CARACTERIZACION FUNCIONAL DE LAS PROTEINAS DE UNION A RNA ABH1 Y SATO. RELACION CON LOS ESTRESES HIDRICO Y SALINO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F075/ES/PROMETEO09%2F2009%2F075/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Muñoz Bertomeu, J.; Cascales Miñana, B.; Mulet Salort, JM.; Baroja-Fernandez, E.; Pozueta Romero, J.; Kuhn, JM.; Segura Garcia Del Rio, J.... (2009). Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis. Plant Physiology. 151(2):541-558. https://doi.org/10.1104/pp.109.143701 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1104/pp.109.143701 es_ES
dc.description.upvformatpinicio 541 es_ES
dc.description.upvformatpfin 558 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 151 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 271506 es_ES
dc.identifier.pmcid PMC2754643
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem