Pandal-Blanco, A.; Pastor Enguídanos, JM.; García Oliver, JM.; Baldwin, E.; Schmidt, D. (2016). A consistent, scalable model for Eulerian spray modeling. International Journal of Multiphase Flow. 83:162-171. doi:10.1016/j.ijmultiphaseflow.2016.04.003
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80740
Title:
|
A consistent, scalable model for Eulerian spray modeling
|
Author:
|
Pandal-Blanco, Adrián
Pastor Enguídanos, José Manuel
García Oliver, José María
Baldwin, E.
Schmidt, D.P.
|
UPV Unit:
|
Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
|
Issued date:
|
|
Abstract:
|
Despite great practical interest in how sprays emanate from fuel injectors, the near-nozzle region has
remained a challenge for spray modelers. Recently, Eulerian models have shown promise in capturing
the fast gas-liquid ...[+]
Despite great practical interest in how sprays emanate from fuel injectors, the near-nozzle region has
remained a challenge for spray modelers. Recently, Eulerian models have shown promise in capturing
the fast gas-liquid interactions in the near field. However, with the inclusion of compressibility, it can
be difficult to maintain consistency between the hydrodynamic and thermodynamic variables. In order
to resolve numerical inconsistencies that occur in segregated solutions of Eulerian spray model equations
as well as to provide good scalability and stability, a new construction of a -Y model is introduced.
This construction is built around an IMEX-RK3 algorithm which offers accuracy and efficiency. The new
algorithm is compared to an existing implementation for speed and is validated against experimental
measurements of spray evolution in order to test the accuracy. The predictions of the new construction
are slightly more accurate and, when tested on 256 processors, are 34 times faster.
[-]
|
Subjects:
|
Eulerian
,
Diesel spray
,
IMEX-RK3 algorithm
,
Near-field
,
CFD
,
OpenFOAMr
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
International Journal of Multiphase Flow. (issn:
0301-9322
)
|
DOI:
|
10.1016/j.ijmultiphaseflow.2016.04.003
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.04.003
|
Project ID:
|
info:eu-repo/grantAgreement/NSF//1053575/US/XSEDE: eXtreme Science and Engineering Discovery Environment/
|
Thanks:
|
Also this research used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. The authors gratefully acknowledge the computing resources ...[+]
Also this research used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. The authors gratefully acknowledge the computing resources provided on the Texas Advanced Computing Center (TACC) at The University of Texas at Austin that have contributed to the research results reported within this paper URL: http://www.tacc.utexas.edu.
[-]
|
Type:
|
Artículo
|