Mostrar el registro sencillo del ítem
dc.contributor.author | Pandal-Blanco, Adrián | es_ES |
dc.contributor.author | Pastor Enguídanos, José Manuel | es_ES |
dc.contributor.author | García Oliver, José María | es_ES |
dc.contributor.author | Baldwin, E. | es_ES |
dc.contributor.author | Schmidt, D.P. | es_ES |
dc.date.accessioned | 2017-05-08T12:06:11Z | |
dc.date.available | 2017-05-08T12:06:11Z | |
dc.date.issued | 2016-07 | |
dc.identifier.issn | 0301-9322 | |
dc.identifier.uri | http://hdl.handle.net/10251/80740 | |
dc.description.abstract | Despite great practical interest in how sprays emanate from fuel injectors, the near-nozzle region has remained a challenge for spray modelers. Recently, Eulerian models have shown promise in capturing the fast gas-liquid interactions in the near field. However, with the inclusion of compressibility, it can be difficult to maintain consistency between the hydrodynamic and thermodynamic variables. In order to resolve numerical inconsistencies that occur in segregated solutions of Eulerian spray model equations as well as to provide good scalability and stability, a new construction of a -Y model is introduced. This construction is built around an IMEX-RK3 algorithm which offers accuracy and efficiency. The new algorithm is compared to an existing implementation for speed and is validated against experimental measurements of spray evolution in order to test the accuracy. The predictions of the new construction are slightly more accurate and, when tested on 256 processors, are 34 times faster. | es_ES |
dc.description.sponsorship | Also this research used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. The authors gratefully acknowledge the computing resources provided on the Texas Advanced Computing Center (TACC) at The University of Texas at Austin that have contributed to the research results reported within this paper URL: http://www.tacc.utexas.edu. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Multiphase Flow | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Eulerian | es_ES |
dc.subject | Diesel spray | es_ES |
dc.subject | IMEX-RK3 algorithm | es_ES |
dc.subject | Near-field | es_ES |
dc.subject | CFD | es_ES |
dc.subject | OpenFOAMr | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | A consistent, scalable model for Eulerian spray modeling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijmultiphaseflow.2016.04.003 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1053575/US/XSEDE: eXtreme Science and Engineering Discovery Environment/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Pandal-Blanco, A.; Pastor Enguídanos, JM.; García Oliver, JM.; Baldwin, E.; Schmidt, D. (2016). A consistent, scalable model for Eulerian spray modeling. International Journal of Multiphase Flow. 83:162-171. doi:10.1016/j.ijmultiphaseflow.2016.04.003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.04.003 | es_ES |
dc.description.upvformatpinicio | 162 | es_ES |
dc.description.upvformatpfin | 171 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 83 | es_ES |
dc.relation.senia | 323461 | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |